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ABSTRACT 

The work presented in this document contributes to the ROBR (Reconfigurable Omni Band 
Radio) project started by the Defence Research Establishment Ottawa and the 
Communication Research Centre in 1997. ROBR is a testbed implementation of a 
reconfigurable satellite communications (satcom) terminal that makes use of a software 
communications architecture. Such a system can enable the use of a single ground terminal to 
communicate over multiple satellite communications or terrestrial links by supporting 
multiple standards. The ROBR hardware architecture includes a microprocessor and several 
digital signal processor (DSP) boards. The objective of this report is to document the work 
done to provide a set of reconfigurable digital filters for use in the ROBR. Five infinite 
impulse response (IIR) filtering modules and four finite impulse response (FIR) filtering 
modules have been implemented. The function of these modules is to compute the 
coefficients of a desired filter design. Also, IIR and FIR signal processing modules have been 
implemented to process digital signals using the computed coefficients. The modules have 
been implemented in the C programming language and are targeted for use on a DSP chip. 
The implementation of the modules has been verified and compared with the results obtained 
with the Signal Processing toolbox from MATLAB. 

RESUME 

Les travaux presentes dans le present document contribuent au projet ROBR (radio omni- 
bande reconfigurable) entrepris par le Centre de recherches pour la defense, Ottawa et le 
Centre de recherches sur les communications en 1997. II s'agit de la mise en ceuvre d'un 
prototype de terminal reconfigurable de telecommunications par satellite qui a recours ä une 
architecture logicielle pour les communications. Ce terminal peut permettre l'utilisation d'un 
seul terminal au sol pour assurer des communications au moyen de plusieurs liaisons de 
communications par satellite ou de plusieurs liaisons de Terre en vertu de plusieurs normes. 
L'architecture materielle du ROBR comprend un microprocesseur et plusieurs cartes de 
traitement numerique des signaux (DSP). Le present rapport a pour but de documenter le 
travail effectue pour la fourniture d'un jeu de filtres numeriques reconfigurables en vue de 
son utilisation dans le ROBR. Cinq modules de filtrage des reponses impulsionnelles infinies 
(RII) et quatre modules de filtrage des reponses impulsionnelles finies (RIF) ont ete mis au 
point. Ces modules servent au calcul des coefficients de la conception desiree des filtres. Des 
modules de traitement des signaux RII et RIF ont aussi ete mis au point pour le traitement 
numerique des signaux au moyen des coefficients calcules. Ces modules, configures en 
langage de programmation C, doivent etre utilises sur des puces DSP. Le fonctionnement des 
modules a ete verifie et compare aux resultats obtenus au moyen du produit Signal 
Processing Toolbox de MATLAB. 
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EXECUTIVE SUMMARY 

The work presented in this document contributes to the ROBR (Reconfigurable Omni Band 
Radio) project started by the Defence Research Establishment Ottawa' and the 
Communication Research Centre in 1997. ROBR is a testbed implementation of a 
reconfigurable satellite communications (satcom) terminal that can support multiple 
standards. Such a system potentially allows the Canadian Forces to use a single ground 
terminal to communicate over multiple satellite communications or terrestrial links. 

The ROBR hardware architecture includes a microprocessor and several digital signal 
processor (DSP) boards. The objective of this report is to document the work done to provide 
a set of reconfigurable digital filters for use in the ROBR. Five infinite impulse response 
(IIR) filtering modules and four finite impulse response (FIR) filtering modules have been 
implemented. These modules will be integrated in the DSPs and processed by them. The 
function of these modules is to compute the coefficients of a desired filter design. Also, IIR 
and FIR signal processing modules have been implemented to process test input signals using 
the filter coefficients generated. 

The implemented techniques to design IIR filters are based on transformation of continuous- 
time IIR systems into discrete-time IIR systems. Two conversion methods have been 
implemented to produce a discrete filter design from an analog filter design: the "Bilinear 
Transformation" and the "Impulse Invariance" methods. Five major types of IIR filters have 
been implemented, the Butterworth filter, the Chebyshev filter, the inverse Chebyshev filter, 
the Elliptical filter and the Bessel filter. The computation of the coefficients for the IIR 
filtering modules is separated into three steps: the analog design computation, the conversion 
of the analog design into a discrete design and the factorization step which produces the 
coefficients of the digital filter. 

The implemented techniques for computing the coefficients of the FIR filtering modules are 
the "Frequency Sampling Design" method, the "Design by Windowing" method and the 
"Parks-McClellan" method (also called the "Remez Exchange Algorithm"). The general 
procedure for FIR filter design is to sample the frequency response of a filter and then 
compute the inverse discrete Fourier transform (IDFT). 

An FIR implementation to compute the coefficients of a Gaussian filter has been 
implemented. The method used to calculate the coefficients of this filter is the "Frequency 
Sampling Design" method. Finally, a digital integrator was implemented. The function of a 
digital integrator is to sum a digital input sequence over time. The Gaussian filter module and 
the digital integrator module may be used in the premodulation stage of a Gaussian niinimum 
shift keying (GMSK) digital modulator for the ROBR. 

The modules have been implemented in the C language for further implementation on a DSP 
chip. The implementation of both IIR and FIR filter modules have been verified and 
compared with the results obtained with the Signal Processing toolbox from MATLAB. 



The implementation of two filtering modules has been successfully done on a TMS320c6201 
digital signal processor from Texas Instruments mounted on a Daytona DSP board from 
Spectrum. 

Gosselin, B., and Wilcox, C, 2001, Reconfigurable Digital IIR and FIR Filters, DREO TR 
2001-099, Defence Research Establishment Ottawa. 
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SOMMAIRE 

Les travaux presentes dans le present document contribuent au prqjet ROBR (radio omni- 
bande reconfigurable) entrepris par le Centre de recherches pour la defense, Ottawa et le 
Centre de recherches sur les communications en 1997. II s'agit de la mise en oeuvre d'un 
prototype de terminal reconfigurable de telecommunications par satellite ä l'appui de 
plusieurs normes. Ce terminal pourrait permettre aux Forces canadiennes d'utiliser un seul 
terminal au sol pour assurer des communications au moyen de plusieurs liaisons de 
communications par satellite ou de plusieurs liaisons de Terre. 

L'architecture materielle du ROBR comprend un microprocesseur et plusieurs cartes de 
processeur numerique de signaux (DSP). Le present rapport a pour but de documenter le 
travail effectue pour la fourniture d'un jeu de filtres numeriques reconfigurables en vue de 
son utilisation dans le ROBR. Cinq modules de filtrage des reponses impulsionnelles infinies 
(RII) et quatre modules de filtrage des reponses impulsionnelles finies (RIF) ont ete mis au 
point. Ces modules seront integres aux DSP et traites par eux. Ils servent au calcul des 
coefficients de la conception desiree des filtres. Des modules de traitement des signaux RII et 
RIF ont aussi ete mis au point pour le traitement des signaux d'entree d'essai au moyen des 
coefficients generes pour les filtres. 

Les techniques utilisees pour la conception des filtres RII sont fondees sur la transformation 
des systemes RII ä temps continu en systemes RII ä temps discret. Deuxmethodes de 
conversion ont ete mises en oeuvre pour la production d'une conception de filtre discret ä 
partir de la conception d'un filtre analogique : la methode de " transformation bilineaire " et 
la methode "par invariance impulsionnelle". Cinq grands types de filtres RII ont ete 
selectionnes : le filtre de Butterworth, le filtre de Chebyshev, le filtre de Chebyshev inverse, 
le filtre elliptique et le filtre de Bessel. Le calcul des coefficients pour les modules de filtrage 
RII se divise en trois etapes: le calcul de la conception analogique, la conversion de la 
conception analogique en conception discrete et la factorisation (qui produira les coefficients 
du filtre numerique). 

Les techniques selectionnees pour le calcul des coefficients des modules de filtrage RIF sont 
la methode de " conception par echantillonnage de frequences ", la methode de " conception 
par fenetrage " et la methode de " l'algorithme d'optimisation de Parks-McClellan " (aussi 
appelee la "fonction de Remez"). La procedure generate de conception des filtres RIF 
consiste ä echantillonner la reponse en frequence d'un filtre, puis ä calculer la transformee de 
Fourier discrete inverse. 

Une application aux RIF pour le calcul des coefficients d'un filtre gaussien a ete effectuee. 
La methode utilisee pour le calcul des coefficients de ce filtre est la methode de " conception 
par echantillonnage de frequences ". Enfin, un module d'integrateur numerique a ete elabore. 
Un integrateur numerique sert au calcul de la somme d'une sequence d'entree numerique 
pour une periode donnee. Le module de filtre gaussien et le module d'integrateur numerique 
peuvent etre utilises ä l'etape de la premodulation d'un modulateur numerique de modulation 
par deplacement minimal avec filtrage gaussien (MDMG). 
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Les modules, configures en langage de programmation C, doivent etre utilises sur des puces 
DSP ä une date ulterieure. Trois modules de filtrage ont ete implantes avec succes sur un 
processeur numerique de signaux TMS320c6201 de Texas Instruments monte sur une carte 
DSP Daytona de Spectrum. Le fonctionnement des modules a ete verifie et compare aux 
resultats obtenus au moyen du produit Signal Processing Toolbox de MATLAB. 

Gosselin, B., et Wilcox, C, 2001, Reconfigurable Digital IIR and FIR Filters, DREO TR 
2001-099, Centre de recherches pour la defense Ottawa. 
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1   INTRODUCTION 

With the rapid increase of communications services and systems being developed and 
implemented using different standards, much effort has been directed over the past decade to 
deal with issues relating to interoperability and compatibility of these various systems. 
While global standardization can be one solution to the problem, a more practical remedy 
may be to develop transceivers that can support different frequency bands and different 
waveform standards using a common hardware platform or device. A feasible way to 
achieve this is to implement the waveform standards in software to provide the required 
flexibility. 

Although initially focused on the personal communications services industry, the software 
radio concept can be extended to other applications such as satellite communications 
(satcom). Just as multiple standards are being considered for integration on a single device 
(e.g. cellular phone), multiple satcom waveforms can be implemented in software to run on a 
single hardware platform or terminal. As with personal communications services, this 
approach potentially offers benefits for interoperability, ease of future upgrades, and even 
integration of future systems. 

Defence Research Establishment Ottawa (DREO) is engaged in a project with the 
Communications Research Centre (CRC) to develop a proof-of-concept testbed for a 
reconfigurable omniband (ROBR) satcom ground terminal using the software radio concept 
described above. The hardware may consist of general processors, digital signal processor 
(DSP) boards, application specific integrated circuits (ASICs), or field programmable gate 
arrays (FPGAs) to perform the processing functions of the particular waveform standard of 
interest. 

One common function that appears in the transmit/receive chain of a ground terminal is 
filtering. Filter specifications may differ from location to location in the transmit/receive 
chain. It would be useful to have one software module capable of generating filter 
coefficients for many types of filters. While many commercial software packages are 
currently available for filter design, they produce a text file with coefficients that have to be 
manually integrated into the processing elements of the terminal. Any change in filter 
specifications would require a new text file to be generated and integrated. The development 
of a reconfigurable digital filter module for the ROBR project allows the coefficients to be 
generated or updated while the terminal continues to operate. 

1.1   Scope 

The work documented in this report provides a suite of several kinds of reconfigurable low- 
pass filters for use in a DSP and more specifically, in the ROBR terminal testbed. The 
reconfigurable digital filters have been programmed in C. Infinite impulse response (IIR) and 
finite impulse response (FIR) filters have been implemented for more flexibility. The 
techniques to design IIR filters are based on conversion of continuous-time IIR systems into 
discrete-time IIR systems. This project explores and implements two different conversion 



methods: the Bilinear Transformation and the Impulse Invariance method. Five major types 
of IIR filters have been implemented: the Butterworth filter, the Chebyshev filter, the inverse 
Chebyshev filter, the Elliptical filter and the Bessel filter. In contrast FIR filters are almost 
entirely restricted to discrete-time implementations. FIR filter design is an approximation of 
an ideal frequency response using specific approximation methods. Three approaches have 
been explored and implemented to design optimal equiripple filters. They are the "Frequency 
Response Sampling Design" method; the "Design by Windowing" method; and the "Parks- 
McClellan" algorithm. The first two methods consist of sampling the frequency response and 
performing an inverse discrete Fourier Transform (IDFT) to compute the filter's coefficients. 
The Parks-McClellan method uses techniques from the approximation theory. The following 
report provides a description of IIR and FIR systems and filters. The report describes the 
various filter design methods mentioned above and their implementation for a general 
purpose processor. The report also describes the adaptation of two of the implemented 
methods for use on a DSP. A comparison of the generated filter coefficients for each filter 
with MATLAB implementations is presented. The report also discusses implementation 
issues related to digital filter design. The reconfigurable digital filter modules are available in 
the package digitaljilters. Further implementation details can be found in the user's guide 
in the digitaljilters package. 



2   DIGITAL FILTERS 

Filters are an important class of systems in signal analysis, signal processing and 
communication. A filter can be described as a discrete-time system or an analog system that 
passes certain frequency components while rejecting others. In a more general context, any 
system that modifies certain frequencies relative to others is also called a filter. The 
following sections present the fundamental concepts involved in discrete-time or digital 
filtering. 

2.1   Discrete-time signal 

A discrete-time signal is an indexed sequence of real or complex numbers denoted by x[n] 
[1]. It is a function of an integer-valued variable, n, that represents an instant in time. In 
practice, discrete-time signals are derived by sampling a continuous-time signal xc(t) to 
produce a sequence of samples. Alternatively, a sequence, x[n], can be represented as a sum 
of scaled, delayed impulses [1] as follows 

x[ri\ = J]x[&]£[n-fc] 
*=-« 

where 

x[k] = xc(kT) 

(1) 

(2) 

<?[«] = 
n = 0 
«*0 

(3) 

Figure 1 shows an example of a discrete-time signal, x[n], representing an arbitrary 
continuous-time signal, xc(t). 

... x[n] 

-2-101234 n 

Figure 1   Graphical representation of a discrete-time signal 



2.2   Linear Time-Invariant (LTI) systems 

This section introduces LTI systems, which are very important for understanding discrete 
filtering. LTI systems may be described in terms of the effect they have on discrete-time 
signals. Figure 2 shows a block diagram of an LTI system. The input x[«]and the output 
y[n]of the LTI system are discrete-time signals. An LTI system may be viewed as a black 
box where its output is related to its input by the impulse response (or transfer function) hk[n] 
of the system. 

Figure 2  Representation of a Linear Time-Invariant System 

The impulse response, hk[n], is the response of the system to an impulse 8[n-k]. An LTI 
system can be completely characterized by its impulse response. We can obtain the output of 
the system from any input by computing 

vH=2>[*M«-*] (4) 

which is commonly called a convolution sum [1] and is denoted by 

2.3   The Laplace transform and the Z-transform 

The Laplace transform is one of the most important tools used in signal analysis. It is used to 
represent the frequency spectrum of a given signal. In fact, the Fourier transform is a special 
case of the Laplace transform. The Laplace transform of a function, x(t), defined for 
t e [- oo, oo], is given by 

X(s)= jx(t)e's'dt (6) 
-00 

where s is a complex frequency variable, s = a + jQ [2]. If x(t) describes the behaviour of 
a system in the time domain, X(s) represents the behavior of the same system in the 
complex frequency domain. It is noted that for the purposes of this report, the symbol Q is 



used to represent the continuous frequency variable whereas the symbol <o is used to denote 
the discrete frequency variable as will be described further. 

The equivalent transformation for a discrete-time system is the Z-transform. The Z-transform 
changes the representation of a discrete signal from the time domain to the discrete frequency 
domain. The Z-transform of a discrete signal x[n] is given by [2] 

X(z)=fdx[ny (7) 

In order to see the relationship between the Laplace and Z- transforms, consider a function, 
xe(t), which is obtained by sampling a continuous function, xc(t), represented 
mathematically as 

*.(0 = xe(f) £*(/ - nT) = 2>e(» W - nT) ( 8) 

where T is the sampling period. The Laplace transform of xe(f) can be written as 

Xe(s)=)xe(t)e-«dt (9) 
-co 

Xe(s)=fixc(nT)e-T° (10) 
»=-00 

Using the relationship in Equation (2), the Z-transform, X(z), can be compared with the 
Laplace transform, Xe (js), where it can be seen that they are related by a variable change 

z = eTs (11) 

so that 

*(*)L» = JXotfv" = *.(*) (12> 

It is noted that the substitution z = e715 transforms the s - jCl axis of the complex frequency 

plane onto a unit circle z = ejTn [2]. 



2.4   Filter design and module specifications 

Filters are an important class of LTI systems. They are used extensively in communications 
(e.g. low-pass filters). It is convenient to characterize a filter by its frequency response 
expressed by the magnitude of its transfer function, |//(ey")|. An example of the magnitude 

response of the transfer function for a low-pass filter is shown in Figure 3. Parameters that 
describe the filter characteristics are listed in Table 1. 

i+fc 

1-Sr 

\Ff(e^ 

Passband Transition band Stopband 

Q 

Qf     us 
n=Fs 

Figure 3  Magnitude response for a low-pass filter 

Filter order n 
Passband frequency Op 
Stopband frequency Qs 

Passband ripple Sp 
Stopband ripple 5s 
Cutoff frequency ne 
Sampling frequency Fs 

Passband attenuation Ap 

Stopband attenuation As 
Transition band roo, ai 

Table 1 List of specifications for a low-pass filter 

Mathematically, the low-pass filter in Figure 3 can be described [1] by 

l-öp<\H(ejn]<\ + öp,      0<|Q|< n. (13) 



#(«*]**., o.^|Q|<^- (14) 

The design process of a filter begins with the filter specifications, which include the 
constraint on the magnitude of the frequency response, the type of filter and the filter order. 
Once the specifications have been defined, the next step is to find a set of filter coefficients. 
The coefficients are simply the values taken from the transfer function hk [n] for specific 
indices that produce the acceptable filter response. After the coefficients have been 
generated, the next step is to use them to process a signal. 

There exist two classes of digital filters: infinite impulse response (IIR) filters and finite 
impulse response (FIR) filters. They are both described in more detail in the following 
sections. 



3   INFINITE IMPULSE RESPONSE FILTERS 

3.1   Infinite impulse response (IIR) LTI systems 

IIR systems are a subclass of linear time invariant systems and satisfy a linear constant- 
coefficient difference equation [1] of the form 

N M 

Y1aky(n-k) = ^jbkx(n-k) an =1 (15) 
t=0 *=0 

Applying the Z-transform to both sides of Equation (15) and using the linearity and the time- 
shifting properties of Z-transforms [ 1 ] gives 

a0=l ftakz-*Y(z) = flbtx-*X{z) 

The transfer function in the Z-domain, H(z), can now be defined as 

H{z) = 
Y(z) 
X{z) 

*=o 
-M 

i+f>* 

b0+bxz~x +b2z~2 +... + bMz 
1 + a}z~l + a2z~2 +... + aNz~N 

*=1 

The coefficients, bk and ak, are the filter coefficients. 

(16) 

(17) 

3.1.1   Flow diagrams of recursive structures 

For implementation on a general or digital processor, IIR systems of the form presented in 
Equation (15) must be converted into a structure from which an algorithm can be derived. 
The difference equation given by Equation (15) can be represented graphically as a recursive 
structure [1]. The IIR structure shown in Figure 4 is referred to as Direct Form I. 

x[n] bo 

z-1 bi 

r-1 bbf-1 

r-1 

y[n] 

-ai r-1 

4 (t>^ r-1 

&*-*<+) ©* -aN 

Figure 4  Flow diagram implementing the Direct Form I realization of an IIR filter 



Table 2 shows the computational requirements of Direct Form I [3]. 

Number of multiplications 
Number of additions 
Number of delays 

N + M +1 per output sample 
N + M per output sample 
N + M 

Table 2 Computational requirements for Direct Form I structure 

3.2   IIR filter design 

There are two general approaches used to design IIR filters. The first approach is to design an 
analog IIR filter and then map it into an equivalent digital filter. This method is 
computationally efficient and gives a lot of control on the design because the art of analog 
filter design is highly advanced [1]. The second approach is to use algorithmic and iterative 
design procedures, which generally requires solving a set of linear or non-linear equations. 
The first approach has been used in this project. 

3.2.1  Analog filter design 

3.2.1.1 Classical analog filter approximations 

This section presents the characteristics of the five analog filter prototypes that have been 
used to produce discrete IIR filters. The important characteristics to be considered are the 
transfer function of the filter, the magnitude and the phase of the frequency response of the 
filter, the poles and zeroes of the filters. The transfer function of the analog prototypes will 
be expressed in the continuous frequency domain in terms of its Laplace Transform. 

The transfer function of any analog prototype filter may be expressed as 

Y\s-z, 
H(s) = H0^  (18) 

where z\ are the zeroes and pk are the poles of the transfer function. The magnitude of the 
frequency response may be expressed as 

H(S)H(-s)\.n=\HUOf (19) 
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The poles of the transfer function [1] are complex numbers and are usually of the form 

Pk=ak+jQk (20) 

3.2.1.2 Butterworth filter properties 

A Butterworth filter yields a flat frequency response in the passband and in the stopband as 
shown in Figure 5. The Butterworth approximation, generally used to design low-pass filters, 
yields an allpole filter and can be described by the following equations [4] [5]. 

normalized transfer function       ^     » 
f](s-pk)    (

s ~ P0(s ~ P2)-(s ~ P„) 
k=\ 

unnormalized transfer //(j.) = 
function 

Q", 

magnitude 2/~»2« Q 

(21) 

(22) 

(23) 

/,e = i where Qc = cutoff frequency, e=\\010 -1, and Ap = passband attenuation in dB. 

The poles of H(s), pk = crk + jQk, are located at 2n equally spaced points around a circle of 
radius Q [4] [5] and are given by 

\\l2n pk=(rirMUa) = aeexp\j 
2n 

k = 0,l,...,n-\ (24) 

o\ = Q„ cos 
(n + l + 2k)n:^ 

In 
(25) 

Qk = Qc sinl ^ —■*- (26) 
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Freqi{8ncy>f8sponse JoraButtetwofthf |t^$mujt|ple '«Äs* 

Figure 5   Frequency response for a Butterworth filter 

The number of poles equals the order of the analog filter, n.   As shown in Figure 5, the 
frequency response in the transition band becomes steeper as the filter order increases. 

The minimum order that will ensure an attenuation of As or more at frequencies Qs and above 
can be obtained [5] by using 

_log(lQ-^/10-l) 

2 log 
^ 

(27) 

Ay 
where Qs 

= stopband frequency 

3.2.1.3 Chebyshev filter properties 

Chebyshev filters are designed to have an amplitude response with relatively sharp transition 
from the passband to the stopband. This sharpness is achieved at the expense of ripples that 
are introduced into the response. As with the Butterworth approximation, the Chebyshev 
approximation yields an allpole filter. Figure 6 shows examples of Chebyshev filters of 
various order, n. As the order increases, the ripple in the passband increases. However the 
tradeoff is a sharper transition from the passband to the stopband. 
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Frequency response for Chebyshev filters ;of multiple orders 

0     01     02    03    04    os^H^V^^BfiSP 

Figure 6   Frequency response for a Chebyshev filter 

The transfer function and magnitude response of a Chebyshev filter [4] [5] is given by 

Transfer function HW = HOY[T:    77 
k-0\.S-Pk) 

Magnitude response I   ^   -'I  ~ \ + e2T2(Q) 

(28) 

(29) 

where the static gain, Ho, is given by 

#0 = 

Il(~^*) nodd 

io'',2ori(-A) 
*=i 

neven 
(30) 

The parameter, e, is dependent on the passband ripple, rp = 20\og(Sp), as follows 

*=Vior'/IO-i (31) 
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and Tn(Q) is the Chebyshev polynomial given by 

T(Q) = i C0S("C0S_1(Q)) 
1 cosh(« cosh"1 (Q)) Q > 1 

0<Q<1 
(32) 

The 2n poles of a Chebyshev filter [4] [5] are given by Equation (29) where 

ak = Qc cos 
(2£-l)   £ 

In    + 2 
(l/y)-r k = 0,\,...,n-\ (33) 

and 

Qk = Qc sin 
(2^-1)    n_ 

In    + 2 
(\ly) + y 

1 + Vl + f2 
\l/n 

k = 0,l,-,n-\ (34) 

(35) 

3.2.1.4 Inverse Chebyshev properties 

The inverse Chebyshev approximation yields a filter which has zeroes and poles. Depending 
on whether the order is even or odd, the filter will have as many zeroes as poles, or n - 1 
zeroes and n poles. Figure 7 shows the frequency response of an inverse Chebyshev filter for 
different orders. Just as the Butterworth and Chebyshev filters showed, the frequency 
response becomes steeper in the transition band as the order of the filter increases. However, 
the inverse Chebyshev filter frequency response exhibits a flat response in the passband and 
ripples in the stopband. The ripples in the stopband increase as the filter order increases. 
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Figure 7  Frequency response for Inverse Chebyshev filters 

The transfer function of an Inverse Chebyshev filter [4] is given by 

tJobk (s-ak) ak =" 
Sk 

(36) 

and its magnitude response is 

Wuntf = 
l + s2[Tn

2(Q)Y 
(37) 

where Tn(Q) is again the Chebyshev polynomial given by Equation (32), and where e 
depends on the stopband ripple in dB, rs = 201og(£s) as follows, 

-VlO^10-! (38) 
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The poles of an Inverse Chebyshev filter [4] are given by Equation (36) where 

o* = Qccos 
(2/ + 1)   £ 

In   + 2 

v-l 

sinh// i = 0,l,...,«-l (39) 

Q,= 
/ 
Q„sin 

(2i + l)    n_ 
In   + 2 

V cosh//      / = 0,l,...,w-l (40) 

where 

sinh-'fl/f-') 
// = i L 

n 
(41) 

The zeroes of an Inverse Chebyshev filter [4] are given by 

For n odd 

j k = 0,\,...,n-\ 
zk = 

cos 
(2k + \)7T 

2n 
k*n 

(42) 

For n even 

zk = 
J 

cos 
(2£ + l>r 

2n     . 

k = 0,1,...,«-! (43) 

3.2.1.5 Elliptical filter properties 

By allowing ripples in the passband, Chebyshev filters obtain better frequency selectivity 
than Butterworth filters because of the sharper transition band. Elliptical filters improve upon 
the performance by permitting ripples in both the passband and stopband. Figure 8 shows the 
frequency response of an Elliptical filter for different values of filter order. 
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Figure 8   Frequency response for an Elliptical filter 

The transfer function of an Elliptical filter [4] [5] is given by 

H(s) = _gg_rj    *2+% 
D0(s)%ts2+bus + b0 

where 

(44) 

/ = 

n-\ 

n 
12 

for n odd 

for n even 
(45) 

D0(s) = ±s + °o for n odd 
for n even (46) 

and <J0 is a constant defined in Appendix B. 

The analog static gain, H0, can be calculated [4] using 
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tf„ = <=1   °0i 

10 
-0.05 ApT-tK_ 

i=l   a0i 

for n odd 

for n even 

(47) 

and the magnitude response [4] [5] using 

\Hc(jnf = ^-T 1   c       '      l + s2R2A ,(0) (48) 

R„(Q) is the Chebyshev Rational Function with respect to the centre frequency 

j£lpQs = Q0 = 1 and where 8 is the ripple factor which depends on the passband ripple, 8P, 

or on the stopband ripple in decibels, rs [3] as follows 

s = 
'l-2Sp + 6p

2 
:VlO'</10-l (49) 

The Rational Normalized Function Rn (Q) is given by [2] 

Rn(Q) = .\ 

(n-l)/2 Q 2       02 

if I-Q/Q2 

|^|Q,2-Q2 

ifl-Q,2Ü2 

ybr « odd 

for n even 

(50) 

The Elliptical filter poles can be computed following a calculation algorithm. Steps to 
calculate the values a0j, b0i and bu of the transfer function are taken from [4] and are listed 
in Appendix B. Once these values are calculated it is easy to obtain the poles, the zeroes and 
the gain of the analog filter which are then used to compute the coefficients of the filter [4]. 
The important parameters that have to be considered for the design of an analog Elliptical 
filter are 

Qp = passband frequency 

Qs = stopband frequency 
Ap = maximum passband loss (dB) 

As = maximum stopband loss (dB) 
k = selectivity factor = Qp /Qs 

Using the quadratic formula, the 1th pair of complex pole values [4] can be expressed as 
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The zeroes occur at 

_-bu±Jbu
2-4b0i 

2 

zt = ±7"V^" 

1 = 1,2,...,/ 

/ = 1,2,...,/ 

(51) 

(52) 

3.2.1.6 Bessel filter properties 

Bessel filters are designed to have maximally flat group-delay characteristics. As a 
consequence, there is no ripple in the impulse and step response. On the other hand, the 
rolloff of the frequency response is more gradual, making the transition band wider than for 
Butterworth or Chebyshev type filters. The Bessel filter is also an allpole filter. Figure 9 
shows the frequency response of Bessel filters for various values of n. 

Frequency for Bessel filters of multiple orders 

0       0.1     .0.2      0.3      0.4      0.5      0.6      0.7      0.8      0.9 
normalized frequency 

Figure 9   Frequency response for a Bessel filter for different values of filter order, n 

The transfer function of a Bessel filter [4] is expressed as follows 

H(s) = 
<lM 

(53) 
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where 

*■(*) = ZV* (54) 
k=\ 

I-    ?"-*>'■ (55) 

The following recursion formula [5] is used to determine q„(s) from q„_x(s) and q„_2(s) 

^=(2"-%n_,+^2^n_2 (56) 

Using this recursion formula involves the computation of the poles of the analog transfer 
function with a numerical analysis formula. These poles are the roots of Equation (53). Using 
these formulas involves more complexity in the algorithm and there is no guarantee that the 
computation of the roots will converge. A very efficient way to implement the Bessel filter is 
by using pre-computed values for its poles. The Bessel filter was implemented using a look 
up table for filter orders of up to n = 25. Poles of the analog transfer function of the Bessel 
filter have been computed using the Signal Processing toolbox from MATLAB and are used 
in this project. The analog poles are converted to discrete values using one of the analog-to- 
digital conversion methods shown in the next section to obtain a discrete design for the 
implementation. 

3.2.2  Conversion of analog MR filters for digital implementation 

This section describes two analog-to-digital conversion methods that have been used for IIR 
filter implementation in this project. The idea of the conversion methods is to transform the 
analog transfer function expressed in the analog frequency domain or the s-plane into a 
discrete transfer function expressed in the discrete frequency domain or the z-plane. 

3.2.2.1 Bilinear transformation 

The bilinear transform [1] is a mapping from the s-plane to the z-plane defined by 

H(z) = Hc 
f\-z'^ 

vl + ^'yj T 

where Hc(s) is the Laplace transform of a continuous function. 

(57) 
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In the previous sections, the equations for the analog poles of the transfer functions of 
different IIR filters expressed in the S-domain were presented. To compute the discrete poles 
of the digital IIR filter from the analog poles of the analog prototype the following 
relationship is used. 

or conversely, 

2 1-z"1 

n+z1 

2-7? 
* = ■=-£ (59) 

2 + Ts 

where T is the sampling period. 

3.2.2.1.1 Frequency warping function 

In bilinear transformation, the relationship between the analog or continuous frequency, Cl, 
and the digital frequency, co, in the Z-domain [1] is given by 

n = -tan(-) (60) 
T      2 

Conversely, to compute the digital frequency corresponding to an analog frequency in the S- 
domain, the following equation applies 

for} 
co = 2arctan| — ( 61) 

2; 

Equation (60) is plotted and shown in Figure 10. It is noted that the range of analog 
frequencies -oo £ Q <oo maps to normalized digital frequencies -n < <o<* %. The frequency a 
= 7i corresponds to half the normalized sampling frequency Fs = 2%. If viewed from the point 
of view of Nyquist's Theorem, since the bilinear transformation is able to map all continuous 
frequencies, Q, to digital frequencies below FJ2, there are no aliased components resulting 
from the conversion of an analog filter to a digital one. However, the effect of this 
transformation is the non-linear compression of the discrete frequency axis as shown in 
Figure 10. 
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Figure 10  Mapping of continuous frequency to digital frequency 

3.2.2.2 Impulse invariance method 

The "Impulse Invariance" method consists of sampling the impulse response of a continuous- 
time system, hc(t) to get a discrete impulse response, h[n], as follows 

h[n] = Thc(nT) (62) 

From Nyquist's sampling theory, it can be shown [1] that the frequency response of the 
discrete-time filter is related to the frequency response of the continuous-time filter by [1] 

»CO-z *.|/§+y Y* *=-« 
(63) 

However, in the case of an ideal bandlimited continuous-time filter, 

which reduces Equation (63) to 

H(eJ*) = Hc 

( V 

M>7tlT 

\o)\ <n 

(64) 

(65) 

It follows from Equation (64) that the discrete-time and continuous-time frequencies are 
related linearly by 

o) = QT (66) 
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In practice, the frequency response of a continuous-time filter is not bandlimited as described 
in Equation (65). As a result, aliasing can occur between successive terms of Equation (63). 
The presence of aliasing has an effect on the design of a discrete-time filter using the Impulse 
Invariance method. However, if the frequency response of the continuous-time filter at 
higher frequencies is sufficiently low and the sampling frequency is sufficiently high enough, 
then aliasing is minimized. 

It is shown in [1] that the transformation from continuous-time to discrete-time can be 
achieved by considering the continuous-time frequency response as a partial fraction so that 

HeUa) = He(s) = t,— (67) *=i s — sk 

Akmay be obtained [5] by computing, 

A=[(s-P>)HM]\,-Pt (68) 

Taking the inverse Laplace transform, the impulse response of the continuous-time filter 
becomes 

Kit) = w (69) 
0 f<0 

The impulse response of the discrete-time filter, obtained by sampling Äc(/)from Equation 
(62) becomes 

/lH=7%c(«r)=r24(^r)"«[«] (70) 

where u[n] is the unit step function. 

N 

I 
*=1 

By taking the Z-transform of Equation (70), the discrete transfer function of the filter is 
therefore given by 

23 



3.3   IIR filtering module implementation 

3.3.1   System 

The IIR filters implemented consist of two important components, the coefficients 
computation module and the signal processing module. The coefficients computation module 
is responsible for designing the filter and computing the coefficients. In order to verify the 
coefficients computation module, a signal processing module is implemented that uses the 
coefficients generated by the computation module to filter a test signal. 

The coefficients computation module operates in three basic steps as shown in Figure 11. 
First, it computes the analog poles, zeroes and static gain of the analog design. Secondly, it 
transforms the analog filter design to a digital design and obtains the digital poles, zeroes and 
static gain. The final step consists of factorizing the digital poles and zeroes to obtain the 
filter coefficients. Two analog-to-digital conversion methods have been implemented and are 
compared. 

Filter specifications 

COEFFICIENTS 
COMPUTATIONS 

MODULE 

Step 1: Analog design computation 

Obtain analog poles, zeroes 
static gain 

Step 2: Conversion to discrete design 

Obtain digital poles, zeroes 
static gain 

Step 3: Factorization of the discrete roots 

FILTER LIBRARY 

Complex number and 
Polynomial 

manipulation 

Input signal 
SIGNAL PROCESSING 

MODULE Output signal 

Figure 11    Block diagram of the implementation of the reconfigurable IIR 
filtering modules 

Each of the steps outlined above makes use of a header file called "Filter.h". The header file 
contains routines for complex number manipulation and polynomial manipulation and is 
listed in Appendix C. Complex number manipulations include computing the norm, 
conversion from Euler representation to trigonometric representation using the formula, 

re JO) = cosü) + jsinü), multiplication and division of two complex numbers, computing the 
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square root of a complex number, and computing a number raised to a complex power, nx+Jy. 
Polynomial manipulations include the multiplication of two polynomials and computing an 
expansion formula to obtain the roots of a polynomial. 

The following two sections describe the coefficients computation and signal processing 
modules in more detail. The software developed for this project is assembled in a 
digitalJilters package for future use in the ROBR. 

3.3.2  IIR coefficients computation modules 

The principle function of these modules is to compute the constants ak and bk for an IIR 
filter given by Equation (17). Five IIR coefficients computation modules have been 
implemented based on the analog designs presented in Section 3.2. Table 3 lists the 
implemented modules. 

Filter type Module name 
Butterworth filter butter 
Chebyshev filter chebl 

Inverse Chebyshev filter cheb2 
Elliptical filter Ellip 

Bessel filter Bessel 

Table 3 IIR Filter types implemented by the corresponding modules 

More information about how to use each module can be found in a user's guide included with 
the software developed. All modules require two input parameters, the digital cutoff 
frequency in Hertz and the sampling frequency also in Hertz . To enable the analog design 
computation block to calculate the analog values of the analog design the input cutoff 
frequency needs to be normalized and mapped as in Equation (60). Figure 12 shows the 
implementation of these operations. 

// normalization of the digital cutoff frequency over 0 to 2% 

float Wd = fc * PI / (Fs / 2.0); 

// computation of the analog frequencies 

float Wc = 2.0/(1.0/Fs) * tan(Wd/2.0); 

Figure 12  Cutoff frequency normalization and analog frequency computation 

Wd is the normalized digital cutoff frequency received by the modules. Wc is the analog 
cutoff frequency required to compute the analog design, and Fs is the sampling frequency. 

25 



3.3.2.1 Analog design computation 

The first step of the reconfigurable IIR module is to compute the analog poles, zeroes and 
static gain for a desired analog filter design. Figure 13 shows the implementation of the 
analog design computation block for the Chebyshev module (chebl). This block implements 
the equations shown in Section 3.2.1.3. The variables, p, z and K are the arrays that contain 
the poles, the zeroes and the analog static gain, respectively. The poles are computed using 
Equations (33) and (34) and the analog static gain K (introduced as H0 in Section 3.2.1) is 
obtained by computing Equation (30). Recall from Section 3.2.1 that the Chebyshev filter is 
an allpole filter and thus, does not have zeroes. This is why the elements of array z are set to 
zero. The same procedure is carried out for the other IIR filters with the appropriate 
equations for poles, zeroes, and static gain. 

As explain earlier in Section 3.2.1.6, the Bessel filter is implemented using a lookup table. 
No zeroes are computed because this filter is an allpole filter. Figure 14 shows the 
implementation of the Bessel coefficients as a look up table. The module considers filters up 
to order 25. The poles stored in the table have been calculated with MATLAB's besselap 
function from the Signal Processing toolbox. 

//computation of the analog poles 
for (i=l;i<=N;i++) 
{ 

z[i-l].Q = 0; 
z[i-l].1 = 0; 
p[i-l].Q = sin((2*i-l)*PI/(2*N))*(((1.0/gamma)-gamma)/2.0); 

//formula for analog poles 
pfi-l].I = cos((2*i-l)*PI/(2*N))*{((1.0/ganma)+gamma)/2.0); 
p[i-l] = set_to_zero(p[i-l]); 
K = multc(K.Q,K.I,-l*p[i-l].Q,-l*p[i-l].1); 

//computation of the analog static gain 

} 

//if analog static gain the order is even, adjust the analog gain 
if(N%2==0) 

K.Q /=sqrt((1.0 + epsilon*epsilon)); 

Figure 13   Chebyshev analog design computation algorithm 
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Switch(N) 
{ 

case 
case 

0: return; 
1: p[0].Q = -1.0; 

p[0].I = 0.0; 
break; 

case 2:p[0].Q=-0.8660254037844386467637229; 
p[0].I=+0.4 999999999999999999999996; 
p[l].Q=-0.8660254037844386467637229; 
p[l].I=-0.4999999999999999999999996; 
break; 

case 25: p[0].Q=0.0; 
p[0].I=-0.9062073871811708652496104; 
p[l].Q=-0.9028833390228020537142561; 
p[l].I=-93077131185102967450643820.0E-27; 
p[2].Q=-0.9028833390228020537142561; 

Figure 14 
table 

Implementation of the Bessel analog design computation block as a lookup 

3.3.2.2 Analog-to-digital Conversion 

The analog-to-digital conversion block is the 2nd step in the coefficients computation module. 
Figure 15 shows the implementation of the conversion block code based on the Bilinear 
Transform method. This portion of code belongs to the function "void bilinear 0", which can 
be found in the file "bilinear.cn in the digital Jilters package. The bilinear conversion 
function takes the analog poles, zeroes and static gain computed in the previous step and 
computes the corresponding digital poles, zeroes and static gain. 

3.3.2.3 Factorization 

Factorization of the zeroes and poles of the discrete transfer function obtained from the 
analog design is done using an expansion formula. Using the discrete-time transfer function 
given in Equation (17), the poles and zeroes of the IIR filter are the roots of the denominator 
and numerator polynomials respectively. The expansion formula may be expressed as 
follows 

Cn+\ ~ Cn+1      Cn (72) 

where c„ are the computed coefficients and em are the roots of the polynomial. The variable 
n is the order of the polynomial and is decremented by one at each iteration. The variable m 
equals the order of the polynomial (i.e. n = m for the first iteration) and stays constant for a 
set of iterations. The factorization will yield n+1 coefficients where n is the filter order. 
Figure 16 shows the implementation of the expansion formula. This portion of code belongs 
to the function "void coeffO" included in the header file "Filter.h". 
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// discretization of the zeroes 

for(i = 0;i < M;i++) 
zd[i]=z[i]; 

for(i = M;i < N;i++) 
{ 

zd[i].Q=-1.0; 
zd[i].1=0.0; 

} 

for(i = 0;i < M; i++) 
{ 

zd[i] = divc(2.0 + (zd[i].Q * Wc/Fs ),zd[i].I * Wc/Fs ,2.0 - zd[i].Q 
* Wc/Fs ,-1.0 * zd[i].I * Wc/Fs); 

zd[i] = set_to_zero(zd[i]); 
tempNKd = multc(tempNKd.Q,tempNKd.I,(2.0*Fs/(Wc)-z[i].Q), 

(-1.0*z[i].I)); 
tempNKd = set_to_zero(tempNKd); 

} 

// discretization of the poles 

for(i =  0;i< N;   i++) 
{ 

pd[i]   = divc(2.0  +   (p[i].Q * Wc/Fs   ),p[i].I  * Wc/Fs  , 
2.0  - p[i].Q * Wc/Fs   ,-1.0  *  p[i].I   * Wc/Fs); 

pd[i]   = set_to_zero(pd[i]); 
tempDKd = multc(tempDKd.Q,tempDKd.I,(2*Fs/(Wc)-p[i].Q), 

(-1.0*(p[i].1))); 
} 

tempKd = dive(tempNKd.Q,tempNKd.I,tempDKd.Q,tempDKd.I); 
Kd =   (multc(tempKd.Q,tempKd.I,K.Q,K.I)).Q; 

Figure 15   Bilinear transform analog-to-digital conversion algorithm 

num = multc(c[n].Q,c[n].I,e[m].Q,e[m].1); 

c[n+l].Q =  c[n+l].Q - num.Q; 

c[n+l].I  = c[n+l].I  - num.1; 

if(n > 0) 
return coeff(&c[0],e,n-l,m); 

else 
return 0; 

Figure 16  Expansion formula algorithm 
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The function "void coeffQ" is called by the coefficients computation modules after the 
analog-to-digital conversion step. The function will fill the empty array cD[n+l], where n is 
the order of the IIR filter with the desired filter's coefficients. More information about this 
subroutine is included in the user's guide. 

3.3.3  IIR signal processing module 

The IIR signal processing module has been implemented based on the Direct Form I 
implementation of the difference equation presented in Section 3.1. This signal processing 
module can be found in the package digitalJilter under the name of IIRDFI. 

The signal processing module computes the output of a system using the IIR filter 
coefficients generated by the coefficients computation module. The input test signal used 
was an impulse sequence. 

Figure 17 shows the implementation of the IIR signal processing algorithm. Details on how 
to execute the IIR filter modules and signal processing module are described in Section 4.3.4. 
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for(i=0;i<numcoef;i++) 
coeffden[i] = dive(aO.Q, aO.I, coeffden[i].Q,coeffden[i].I); 

for(i=0;i<numsamples;i++) 
{ 
sumnum.Q=0.0; 
sumnum.1=0.0; 
sumden.Q=0.0; 
sumden.1=0.0; 

for(j =0;j<numcoef;j ++) 
{ 
indx = i - j; 
if(indx < 0) break; 
else 

{ 
sumnum.Q += coeffnum[j].Q * samples[indx]; 
sumnum.I += coeffnum[j].1 * samples[indx]; 

} 
} 

for(j=l;j<numcoef;j++) 
{ 
indx = i - j; 
if(indx < 0) break; 
else 

{ 
sumden.Q+=multc(coeffden[j].Q,coeffden[j].1, 

output[j-1].Q,output[j-1].1).Q; 
sumden.I+=multc(coeffden[j].Q,coeffden[j].I, 

output[j-1].Q,output[j-1].I). I; 

} 
} 

for(j=numcoef-l;j>0;j—) 
output[j]=output[j-1]; 

output[0].Q=sumnum.Q-sumden.Q; 
output[0].I=sumnum.I-sumden.I; 
> 

Figure 17  IIR signal processing module algorithm 
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4   FINITE IMPULSE RESPONSE FILTERS 

4.1    FIR LTI systems 

The FIR signal processing module implements an FIR structure called the Direct Form to 
process digital signals. For FIR systems, the transfer function H(z) has no poles except at 

z = 0. Thus, H(z) is simply a polynomial in z'1 of the form 

M 

I 
*=o 

H(z) = £ hkz~k = h^ + 1\z~x + f^z'2 +... + hMz' M (73) 

The output of such a filter is 

M 

*=o (74) 
= 1% + hyX(n -1) + hjX{n - 2)...hMx(n - M) 

which is the computational sum introduced in Section 2.2. 

4.1.1   Flow diagrams for non-recursive structures 

The flow diagram shown in Figure 18 illustrates the convolution sum that relates an FIR 
filter's output to its input. This structure is called the Direct Form. Unit delays are denoted by 
z_1 as shown in the figure below 

x[n 
Z1 Z1 z-1 

ho hi h2 IB 

J h 1 h) *( 

f-\ 

hM-i 

r-\ 

hM 

e—4> 
y[n] 

Figure 18  Flow diagram of the Direct Form realization of an FIR filter 

Table 4 shows the computational requirements of Direct Form implementation of an FIR 
filter [3]. 
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Number of multiplications 
Number of additions 
Number of delays 

N + 1 per output sample 
N per output sample 
N 

Table 4 Computational requirements of the Direct Form I structure of FIR filters 

4.2   FIR filter design 

Recall for IIR filters that the design techniques were based on transformation of continuous- 
time IIR systems into discrete-time systems. In contrast, FIR filter design is almost entirely 
restricted to discrete-time implementation. Consequently, the design techniques for FIR 
filters are based on directly approximating the desired frequency response of the discrete- 
time system. Furthermore, most of these approximation techniques avoid the problem of 
factorization that complicates the design of IIR filters. In the context of this project, three 
techniques have been implemented to compute the FIR filter coefficients of interest: the 
"Frequency Sampling Design" technique; the "Design by Windowing" method; and the 
"Parks-McClellan" method. The following sections introduce these three methods. 

In addition, the design of a Gaussian filter and a digital integrator is included in this section. 
A Gaussian filter and a digital integrator are used in the premodulation stage of a Gaussian 
minimum shift keying (GMSK) modulator that is to be implemented in the ROBR. 

4.2.1   "Frequency Sampling Design" filter module 

The "Frequency Sampling Design" method is a straightforward design procedure. The 
frequency response of an ideal filter is sampled and each sample of the frequency response is 
a coefficient. Figure 19 shows the frequency response of an ideal low-pass filter. To get the 
values of the coefficients in the time domain, an IDFT is performed on the samples collected 
[1][3][5]. 

Hd(co) 

-7C 71 CO 

Figure 19  The desired frequency response Hd(a>) of an ideal low-pass filter 
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The desired frequency response is uniformly sampled at N equally spaced points between 0 
and 27i to yield 

( i*\ 
H(k) = Hd k = 0,l,...,N-l (75) 

v       J 

These samples constitute an N-point DFT, whose inverse is the impulse response of an FIR 
filter of order N-l: 

h[n] = —YdH(k)eJ2*klN (76) 

The inverse DFT can be modified to take advantage of symmetry conditions. Table 5 shows 
adapted IDFT formulas to the four types of FIR filters. [5] 

Im. h[alforn= 0,1,2,..., N-l 

h[n] symmetric 
Nodd 

1 - tf(0) + £2tf(*)cos 
t=i 

2n(n-M)k 
N 

h[n] symmetric 
Neven 

1  f (N£tx 

cos 
2n(n-M)k 

N 

h[n] asymmetric 
Nodd 

±iT2H(k)sm 27t{M-n)k 

N 

h[n] asymmetric 
Neven 

1    f     f N\ {NI2)-\ 
^j#lyJsin[^M-n)]+ £ 2H(k)sin 2n(n-M)k 

N 

Table 5 Inverse Discrete Fourier Transform formulas for FIR Design 

In this project, the first type and the second type of FIR filter have been implemented for a 
low-pass filter with symmetric impulse response. 

4.2.1.1 Gibbs phenomenon 

One problem related to the approximation methods used to produce FIR filter coefficients is 
Gibbs phenomenon. Figure 20 shows the amplitude of the frequency response and the power 
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spectrum of a low-pass FIR filter affected by Gibbs phenomenon. The coefficients of the 
filter were computed with the "Frequency Sampling Design" method. The frequency 
response has an oscillating behaviour that is more pronounced near the edge of the passband. 
This behavior is known as Gibbs phenomenon and is the result of approximating a 
discontinuity in the desired frequency response. In [3] it is noted that if a function with a 
discontinuity is approximated by a Fourier series, there is an overshoot in the region near the 
discontinuity. As the number of Fourier series terms increases, the squared error decreases 
and approaches zero as the number of terms approaches infinity. However, the maximum 
value of the overshoot, and therefore the maximum value of the error, do not go to zero but 
approaches a constant value of 11 % of the size of the discontinuity. In the "Frequency 
Sampling Design" method, the overshoot may approach approximately 18% of the 
discontinuity [3]. 
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Figure 20    (a) Frequency response of an FIR filter affected by Gibbs phenomenon 
(b) Power Spectrum of an FIR filter affected by Gibbs phenomenon 

4.2.3 "Design by Windowing" filter module 

The "Design by Windowing" method begins with a desired frequency response that can be 
represented as 

#,(0=fX["K>a (77) 

where hd[n] is the corresponding impulse response sequence. Let Hd(ejm) be an ideal low- 
pass filter with frequency response 
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(1      0 < n < M 
Hd(ejm) = (78) 

0       otherwise 

where M is the filter order. As in the "Frequency Sampling Design" method, the impulse 
response of the ideal frequency response can be obtained by performing an inverse Fourier 
transform. 

hd[ri\ = ^-)Hd{eJm)d(0 (79) 
2K -n 

However, to improve the impulse response of the filter and to reduce Gibbs phenomenon the 
ideal impulse response is truncated using a window. The simplest way to obtain a causal FIR 
filter from hd[n] is to define a new system with impulse response h[n] given by 

fr ,    [hJn]       0<n<M 
h[n] = \ dl (80) 

0 otherwise 

where M is the order of the transfer function polynomial. Thus, (M +1) is the length of the 
impulse response. Alternatively, we can represent h[n] as the product of the desired impulse 
response and a finite-duration "window", w[n], 

h[n] = hd[nMn] (81) 

This multiplication truncates the ideal infinite impulse response, hdfnj, to obtain a finite 
impulse response, h[n], with less imperfection, thus reducing the effects of Gibbs 
phenomenon. In the frequency domain, Equation (81) can be expressed as 

H(eJa) = — \Hd{ei<a)W{eic°-$)dG (82) 

That is, H(eJm)\s the periodic convolution of the desired ideal frequency response with the 
Fourier transform of the window. Thus, the frequency response H(eJ<a) will be a "smeared" 
version of the desired response Hd{eJa). 

Some commonly used windows [1] are shown in Figure 21 and their equations listed in Table 
6. The Hamming window used for this project is shown in red in Figure 21. 
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Commonly used windows 

Bartlett 
Blackman 
Hamming 
Hanning 
Rectangular 

0       10       20       30       40       50       60       70       80       90      100 
(M-1)/2 M-1 

Figure 21   Commonly used windows 

Window Window equation 
Rectangular fl,       0<n<M 

w(ri) = < 
[0       otherwise 

Barlett (triangular) 

w(ri) = « 

2«/M,        0<n<M/2 

2-2n/M    MI2<n<M 

0                otherwise 

Hanning \0.5-0.5cos(27m/M)        0<n<M 
w(ri) = < 

[0               otherwise 

Hamming \0.54-0.46COS(2MI/M)        0<n<M 
w(ri) = < 

[0               otherwise 

Blackman f0.42 -0.5cos(2^7/M) + 0.08cos(4^7IM) 0<n<M 
w(ri) = < 

[0               otherwise 

Table 6 Commonly used window functions 

Figure 22 shows the improvement obtained with the "Design by Windowing" method as 
compared with the "Frequency Sampling Design" method. The overshoot near the 
discontinuity, in the passband and in the stopband, has been considerably reduced using the 
"Design by Windowing" method. 
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Figure 22 Comparison between the "Frequency Sampling Design" and "Design by 
Windowing" methods for FIR filter design, (a) Frequency response, (b) Power 
spectrum 

The power spectrum on the right side shows that the attenuation in the stopband has been 
improved by more then 20 dB. 

4.2.4  Parks-McClellan filter module 

While the design of FIR filters with the "Frequency Sampling Design" method with or 
without windowing is straightforward, there are a number of limitations. The "Parks- 
McClellan" algorithm yields optimal filters and offers more control on certain regions of the 
frequency response of the filter. The Parks-McClellan algorithm is based on expressing the 
filter design problem as a problem in polynomial approximation [1] which is described 
briefly in the next section. 

4.2.4.1 Chebyshev approximation 

Given the problem of designing a low-pass filter with specifications such as those shown in 
Figure 3, the Parks-McClellan algorithm considers that the desired frequency response of a 
filter may be approximated by a c'th-order polynomial in coso) as follows 

P(a)) = J^ak(cosco)k (83) 
jfc=0 
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where c = KC , N is the number of samples of the filter impulse response, and coefficients 

ak are chosen so as to yield a P{co) which is optimal in a sense that is defined below. 

D(a>) 

1+5! 

1- 
l-6f 

8,~ 
H h 
Op      C0a 7C ® 

Figure 23 The desired frequency response D(co) of a low-pass filter 

Consider D(co) to be the desired frequency response, also shown in Figure 23, so that 

D(co) = 
for   0 < co < cop 

for co„<co<n (84) 

and let W(co)be the weighting function for the approximation error over each of the intervals 
that the filter is defined, 

fl     for   0 < a < co„ 
W(co) = { p 

I öj S2     for  coa<co<n 
(85) 

where h\ and 82 are the amplitude of the passband and stopband ripple respectively. The error 
made by the approximation oiD(co) by P(co) can be computed by [1][6][7] 

E(co) = W(co)[D(o))-P(oo)] (86) 

The weighted error function, E(co), the weighting function W(co), the desired frequency 
response D(a>) and the approximation polynomial P(co), are defined for the same discrete 
subset of frequencies taken from the interval 0 < co < n. For a low-pass filter, these four 
functions will be defined over 0 < co < cop and coa<co<n as indicated in Equations (84) 
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and (85). The subinterval [Cometh] is the transition band of the filter. As E(eo), W(co), 
D(<y) and P(CD), are not defined over the transition band, the Parks-McClellan method [1] 
allows P(co) to take any shape in this band to achieve its optimum approximation and meet 
the filter specifications. The criterion used in this design procedure is the Chebyshev 
Criterion [1] where within the frequency intervals of interest, P(co) is chosen to minimize 
the maximum weighted approximation error. This can be expressed by 

min maxl^H (87> 
A[n]:0Sn£Z. I    aeF J 

where F is the closed subset of 0 < co < n over which the filter is specified (i.e. 0 < a <, cop 

and CDa ^ 0) ^ n). Thus, the method is to seek the set of frequencies that produce the impulse 
response values that minimize the error. These impulse response values are then used to 
compute the coefficients of a desired filter. An IDFT will be performed on the impulse 
response values to give the coefficients of the filter in the time-domain. A weighting factor 
may be associated with each frequency subinterval (i.e. Q<eo£a)p and (oa<(o<n for a 
low-pass filter). The general idea for using a weighting factor is to exaggerate the error of the 
approximation. The algorithm, in turn, will try to produce a better approximation for bands 
with the higher weighting factor by minimizing this amplified error. This results in more 
iterations to compute the approximation but a more accurate response is achieved in the 
higher weighted band. 

Parks-McClellan applies the Alternation Theorem from approximation theory to minimize 
the error. The Alternation Theorem is described in the next section. 

4.2.4.2 Alternation theorem 

The Alternation Theorem states that if the frequency response of a filter is represented by a 
linear combination of c cosine functions, as expressed in Equation (83), the best-weighted 
Chebyshev approximation to a desired frequency response, D(co) is achieved if the weighted 
error function E(o>) exhibits at least c + 2 extremal frequencies iaFp. An extremal 
frequency is the frequency at which a ripple (either in the passband or the stopband) is at its 
maximum or minimum value.    Fp is the subset of frequency intervals over which the 

passband and stopband are defined. Thus, there are at least c + 2 frequencies in Fp such that 

ax < o)2 <... < <oc+2 and such that E^) = -E(eoM) = ±E for / = l,2,...,c + l [1]. To find the 
extremal frequencies from the discrete subset of potential extremal frequencies Fp, the 
Parks-McClellan method uses the Remez Exchange algorithm. The Remez Exchange 
algorithm is a set of conditional statements applied to the potential extremal frequencies 
contained in Fp. Based on the Chebyshev error criterion, the Remez Exchange algorithm will 
determine if a frequency is an extremal frequency or not. The c+2 extremal frequencies 
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found by the algorithm are then used to compute the filter frequency response with the 
approximation function P(co). The Remez Exchange algorithm is described further in [6] [7]. 

From the Alternation Theorem we can write [7] 

E{a>l) = W{a>l)[£>(<»,,)-/>(<o,)]=(-l)'+,<? , i = l,2,...,(c + 2) (88) 

where 8 is the optimum error. Parks and McClellan [1][6][7] found that for the given set of 
the extremal frequencies, 8 is given by the formula 

c+2 

Ivw 
_ *-i 

k W{fok) 

where 
c+2 c+2 1 **=n—— 
4-1   {Xk —Xjj 
4** 

where 

*-i 

x = coseo 

(89) 

(90) 

and 

x, =coseoi (91) 

Parks and McClellan used the Lagrange interpolation formula [1][6] to obtain 

c+l 

£k/(*-*,)]ct 
rt") = *bi  <92> 

(93) 

Q=D(«»)-i-^- (94) 

C+l 1 

^-riT-1-^0^*-^) (95) 
4-1   \Xk ~Xi) 
i*k 
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Figure 24 shows an example of a low-pass filter described by the Parks-McClellan method. 
A flow diagram of the algorithm can be found in [1]. 
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Figure 24  Typical example of a low-pass filter approximation that is optimal according 
to the alternation theorem for c = 7 

4.2.5  Gaussian digital filter module 

A digital GMSK modulator is to be implemented in the ROBR testbed. One implementation 
of the GMSK modulator requires a Gaussian filter and a digital integrator as shown in Figure 
25. As a result, a Gaussian filter is also implemented using an FIR filter design technique. 
The coefficients computation module uses the "Frequency Sampling Design" method to 
calculate the coefficients of a Gaussian filter. However, instead of sampling the ideal 
frequency response of a low-pass filter, a Gaussian distribution is sampled. The impulse 
response of a Gaussian filter is expressed as [12] 

where £, = 
n 

V21n2 
(96) 

or 
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A(0 = 
2<T2r2 

\2noT 
a -■ 

2KBT 
(97) 

where B is the 3dB bandwidth of the Gaussian filter and T is the bit period. The sampling of 
the Gaussian distribution is done over the frequency domain expression obtained by taking 
the Fourier Transform of Equation (96) giving 

H(o)) = e 
1   ai 

_ 0  4k2B2 

(98) 

Figure 26 shows Gaussian frequency response for various values of BT product. 

NRZ 
sienal 

hH Integrator Gaussian 
Filter 

cos(nw0) 

J 
-sin(nw0) 

cos(nw0+e) 

Figure 25   The premodulator stage of GMSK digital modulator includes a digital 
integrator followed by a Gaussian filter 

H(a>)withBr=1 

H(co)\A«thBT=0.5 

H(a>)withBr=0.25 

normalized frequency 

Figure 26   Frequency response for a Gaussian filter 
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4.2.5.1 Digital integrator module 

As mentioned in Section 4.2.5, a GMSK modulator is to be implemented in the ROBR and 
requires a digital integrator. As a result, the implementation of a digital integrator module is 
included here. The implementation of the digital integrator is very simple. The output for a 
given moment, yk, of such a filter is the summation of the present input xk and all the 
previous or past inputs, which can be expressed mathematically as 

(99) 

4.3   FIR filter module implementation 

4.3.1   System 

As with the IDR. filter modules, the FIR filter modules implemented consist of two 
components, a coefficients computation module and a signal processing module. The 
coefficients computation module is subsequently broken down into two stages, a sampling 
step and the computation of an inverse discrete Fourier Transform. The coefficients 
computation module takes the filter specifications, computes the desired FIR design and 
generates the coefficients of the filter. The signal processing module takes an input signal 
and processes it using the coefficients computed by the coefficients computation module. 
Figure 27 shows the architecture of the FIR filter modules. 

Filter specifications 

COEFFICIENTS 
COMPUTATION 

MODULE 

Step 1: Sampling of an ideal filter 

Obtain N samples 

Step 2: Perform IDFT 

Obtain N coefficients 

Input 
signal 

SIGNAL PROCESSING 
MODULE 

Output 
signal 

Figure 27  Block diagram of FIR filter module implementation 
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The three design methods described earlier have been implemented to compute FIR filter 
coefficients. The "Frequency Sampling Design" method, the "Design by Windowing" 
method and the "Parks-McClellan" method are described in the following sections. In 
addition, the implementation of filter modules for the Gaussian filter and the digital 
integrator are presented. 

4.3.2  FIR coefficients computation modules 

For FIR filters, the coefficients computation modules generate the coefficients hk identified 
in Equation (73). The coefficients are subsequently used in the FIR signal processing 
modules to process a digital signal. Five FIR coefficient computation modules have been 
implemented. The implemented modules are listed in Table 7. 

Filter Design Module Name 
Frequency Sampling Design method Freqsampling 

Design by Windowing method Hamming 
Park-McClellan Method Remezex 

Gaussian filter Gauss 
Digital Integrator Dintegrator 

Table 7 FIR filter types implement by the corresponding modules 

More information about how to use each module can be found in the user's guide included 
with the software developed. All FIR coefficient computation modules, except the digital 
integrator module, require two input parameters: the digital cutoff frequency and the 
sampling frequency. 

4.3.2.1 Frequency sampling design method module implementation 

The design method starts in the frequency domain and is separated into two steps. To apply 
the "Frequency Sampling Design" method, a vector is created which contains the frequency 
response samples of the desired low-pass filter. The size of this vector will be the same as the 
number of coefficients to be computed. This operation is equivalent to sampling an ideal 
frequency response. Once this vector is built, an IDFT is then performed on the vector's 
elements to compute the coefficients of the filter in the time domain. The implementation of 
these two steps to design a low-pass filter is described in the next sections. 

4.3.2.1.1 Sampling the ideal frequency response 

The first step in designing an FIR filter is to build the vector of frequency response samples. 
For a low-pass filter, the elements which belong to the passband of the ideal frequency 
response will be set to T and the elements which belong to the stopband of the ideal 
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frequency response will be set to '0'. The number of elements set to '1' or '0' will depend on 
the normalized cutoff frequency and on whether the number of coefficients is odd or even. 
The number of elements to set to ' 1' in the frequency response vector of a low-pass filter can 
be computed [5] using the program code shown in Figure 28. 

if(num_taps%2) //odd number of coefficients  case 
numsamples = ceil(num_taps  * Wd/(2*PI)   -  0.293); 

else 
numsamples  = ceil(num_taps  * Wd/(2*PI)   -  0.207); 

Figure 28 Computation of the number of samples to include in the passband of an 
ideal low-pass filter 

The other elements of the vector will be set to '0' to represent the stopband. The creation and 
initialization of this vector is equivalent to sampling an ideal frequency response because 
each element of this vector may be viewed as a sample. The program code needed to build 
this vector is shown in Figure 29. Thus, an example of a frequency response vector could be 
H[n] = [1,1,1,1,1,0,0,0,0,0,] for a low-pass filter with 10 coefficients. 

//sampling of the ideal frequency response 

for(int i=0;i<numsamples;i++) 
{ 

H[i] = 1.0; 
} 

for(int i=numsamples;i<num_taps;i++) 
{ 

H[i] = 0.0; 
} 

Figure 29  Sampling of an ideal low-pass filter frequency response 

4.3.2.1.2 Implementation of the IDFT 

The IDFT is performed on the frequency domain samples of the ideal low-pass filter 
generated in the previous section. The appropriate expression of the IDFT is used depending 
on whether the number of coefficients is odd or even. The algorithm is listed in Figure 30. 
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Float temp = 0; 
Float mid_pt = (num_taps-l.0)12. 0; 
Float x; 
if(num_taps%2) // N odd 

{ 
for(int n=0;n<num_taps;n++) 

{ 
temp = H[0]; 
x = 2 * PI * (n - mid_pt)/num_taps; 
for(int k=l;k<((num_taps-l)/2);k++) 

temp+=(2.0*cos(x*k))*(H[k]); 
h[n] = temp/num_taps; 
fprintf(outputfile,"%f\n",h[n])///printing the 

coefficients in an output file 

} 
} 

else // N even 
{ 
for(int n=0;n<num_taps;n++) 

{ 
temp = H[0]; 
x = 2 * PI * (n - mid_pt)/num_taps; 

for(int k=l;k<=(num_taps/2) - l;k++) 
temp+=(2.0*cos(x*k))*(H[k]); 

h[n] = temp/num_taps; 
fprintf(outputfile,"%f\n",h[n]); 

} 
) 

Figure 30   Inverse discrete Fourier transform algorithm performed on the ideal low- 
pass filter frequency response samples 

4.3.2.1.3 Design by windowing 

The only difference between the "Design by Windowing" method and the "Frequency 
Sampling Design" method is that, for the design by windowing method, the result of the 
IDFT will be multiplied by a vector containing the samples of a Hamming window. The 
equation to compute the samples of a Hamming window is given in Table 6 in Section 4.2.3. 
The computed samples of the Hamming window will be stored in a vector of N elements, 
where N is the number of filter coefficients. Then the coefficients obtained from the 
computation of the IDFT, and stored in h[n], will be multiplied by this vector, as shown is 
Figure 31. 
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for(int k=l;k<((num_taps-l)/2);k++) 
temp+=(2.0*cos(x*k))*(H[k]) ; 

//multiplying the time domain coefficients by the Hamming window 

h[n] = temp/num_taps * (0.54 - 0.46*cos(2*PI*n/num_taps)); 

//printing the coefficients in an output file 

fprintf(outputfile,"%f\n",h[n]); 

Figure 31   "Design by Windowing" algorithm 

4.3.2.2 Parks-McClellan method implementation 

The implementation of the Parks-McClellan FIR coefficients computation module is included 
in the package digital [Jilters under the directory named remezex. The implementation is 
separated into two files: remezex.c and remez.c. The library remez.h is required by these two 
files and contains the appropriate constants and functions used by them. The file remez.c and 
remez.h are external files that were first created by Jake Janovetz and can be used under the 
GNU General Public license restrictions. The source code implemented by Jake Janovetz 
provides a very good implementation of the Remez Exchange algorithm and forms the basis 
of the implementation of the reconfigurable module. The GNU General Public License 
allows anyone to use and modify a file or a portion of code placed under the terms of this 
license. The GNU General Public License has been included in the digital Jilters package. 
To find out more about the terms and agreements of this license, the reader is referred to 
http://www.gnu.org/licenses/gpl.html on GNU's web site. 

The task of the file remezex. c is to acquire the filter design parameters entered by the user, 
initialize the variables used by the module and make the function calls to compute the filter 
coefficients. It is noted that remezex.c will normalize the input digital frequency over the 
interval [0,0.5], as is required for the implementation of the Parks-McClellan method [3]. 
Then, the file remezex.c fills three arrays depending on the design parameters entered. 

The array desiredf] contains the magnitude of the sampled ideal frequency response. For a 
low-pass filter, there are two elements in the array desiredf] to represent the magnitude of the 
frequency response in the passband and in the stopband respectively. In this implementation, 
the first element is initialized to T to represent the magnitude of the frequency response in 
the passband. The second element is initialized to '0' to represent the magnitude of the 
response in the stopband. 
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The array weightsfl contains floating point values representing the weights given to the 
passband(s) and stopband(s). These weights will determine the importance to give to the 
corresponding frequency band in the computation of the algorithm. A large value given to a 
weight corresponding to a specific band will put the emphasis of the algorithm on producing 
a better approximation of the ideal frequency response in this band compared to the 
approximation made in the other bands [1]. For a low-pass filter, the weights[] array contains 
two elements. The first one specifies the weighting assigned to the passband and second 
specifies the weighting assigned to the stopband. For this implementation, each frequency 
band was given the same weighting and thus, both elements are set to ' 1'. 

The array bandsfj contains the edge frequencies which delimit the passband and the 
stopband of the low pass filter's frequency response. This array contains four normalized 
frequency values to delimit the passband and the stopband and should be in the form, [0, (fy, 
(Oa, 0.5]. In this implementation, the user enters the desired normalized cutoff frequency, W& 
and a value of cop = Wd - 0.025 and coa = Wd + 0.025 is computed for the array bandsfj. 

The length of the transition band between the passband and the stopband, for this module, 
has been arbitrarily chosen to be 0.05 Hz/Hz. 

Figure 33 shows the contents of remezex.c. After, filling the three required arrays, remezex.c 
makes a function call to void remezO, the function which computes the filter coefficients 
using the Remez Exchange algorithm. voidremezQ is implemented in the file remez.c. 

desiredtO] = 1; 
desired[1] = 0; 

weights[0] = 1; 
weights[1] = 1; 

bands[0] = 0; 
bands[1] = Wd-0.025; 
bands[2] = (Wd + 0.025); 
bands[3] = 0.5; 

remez(&h[0],num_taps, 2, bands, desired, weights,BANDPASS); 

Figure 32  Content of the file remezex.c 

4.3.2.3 Gaussian filter implementation 

The implementation of the Gaussian filter coefficients computation module is based on the 
"Frequency Sampling Design" method. Instead of computing the samples of the frequency 
response of an ideal low-pass filter, samples for a Gaussian distribution are calculated based 
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on Equation (98).  Figure 32 shows the portion of code that is used to fill in the array of 
frequency response samples, H[i]. 

//computing the sampling step 
step = (float)(Fs/num_taps); 

//sampling of the gaussian curve 
for(int i=0;i<num_taps;i++) 

{ 
H[i] = exp((-1.0/4.0)*(2.0*PI*i*step)* 

(2.0*PI*i*step)/(K*K*B*B)); 
} 

Figure 33  Sampling algorithm of a Gaussian distribution 

The next step of the implementation is to compute the IDFT of the sampled curve to get the 
filter coefficients as was done for the "Frequency Sampling Design" method implementation 
and the "Design by Windowing" method implementation. 

4.3.3 FIR signal processing modules 

The FIR signal processing module has been implemented based on the convolution equation 
introduced in Section 4.1. This implementation is based on the Direct Form structure 
presented in Section 4.1.1. The signal processing modules can be found in the package of 
filter modules under the name offirdf. 

Figure 34 shows the implementation of the algorithm of the FIR signal processing module. A 
buffer is used to store the input samples required for the convolution. First, the previous input 
samples are shifted down in the buffer. The current input sample is then read from an input 
text file and stored at the beginning of the buffer. Then, a convolution sum, as described in 
Equation (4), is performed to produce an output sample which is stored in an array. The 
output array is printed to a text file once all the input samples have been processed. This 
implementation is able to operate in real time as each input sample is read and processed to 
directly produce an output sample. 
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while(fscanf(inputfile,"%f",Ssample)!=EOF) 

//reading input sample from the input file 
{ 

for(j=numcoef-l;j>0;j—) 
{ 
if(indx-j < 0) continue; 

inputBuffer[j]=inputBuffer[j-1]; 
) 

inputBuffer[0]=sample; 

//convolution operation to produce output sample 

output=0; 
for(i = 0; i< numcoef;I++) 

{ 
if(indx-i < 0) break; 
output+=coeff[i]*inputBuffer[i] ; 
} 

fprintf(outputfile,"%f\n",output); 
indx++; 

Figure 34  FIR signal processing module algorithm 

4.3.4  Use of the filter and signal processing modules 

The following is an example of how the modules are used to generate coefficients for a low- 
pass Butterworth filter. The coefficients computation modules can be executed from the 
prompt of a console as shown in Figure 35. The module butter takes four arguments as input 
design specifications, the filter's order, the normalized cutoff frequency, the sampling 
frequency and the number associated with the method used to compute the discrete design. 
The filter order is entered as an integer value. The normalized cutoff frequency is entered as 
a floating point number between 0.0 and 1.0 for the Butterworth filter. The sampling 
frequency is a floating point number and is normalized to 2.0 in this example. The units of 
the normalized cutoff frequency and the sampling frequency are Hz/Hz. It is noted that the 
normalized cutoff and sampling frequencies are relative. As a result, the filter module allows 
for scalability of the filter design and generates the same coefficients for filters with the same 
ratio of cutoff frequency to sampling frequency. The last parameter specifies the method 
used to compute the discrete design. A T is entered to select the Impulse Invariance 
method, and a '2' is entered to select the Bilinear transformation. 
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R Command Prompt 

Microsoft   Windows   20ÖÖ   [Version   b,L^ „„. 
<C)   Copyright   1985-2000  Mierusoft   Corp. 

Figure 35   Command line for Butterworth filter module 

After the computation of the coefficients is complete, the module generates an output file, 
"butterout.tot" with the coefficients of the filter. Figure 36 shows an example of the 
coefficients computation module output file. The order of the filter computed is printed on 
the first line. Then, on the second line, the digital static gain is printed and finally, the 
coefficients of the filter are printed in four columns. The two left most columns contain the 
real and imaginary parts of the numerator coefficients (6*). The two right most columns 
contain the real and imaginary parts of denominator coefficients (a*). 

| i§ butterout.txt - Notepad                                                        7! i&k.. * IPN 
j: File   Edit   Format   Help 

; 5.000000  Order 
Gain 

cients 

El 

jB. 

u. u. 
IQ.0! 
0.2* 
0.5; 

10.51 
\Q.2i 
;0.0! 

It. 1 U<J 

52786 0.000000 1.000000 0.000000 
53932  0.000000 0.000000 0.000000 
»7864  0.000000 0.633437 0.000000 
»7864  0.000000 0.000000 0.000000 
53932  0.000000 0.055728 0.000000 
52786 0.000000 0.000000 0.000000 

'— Denominator Coeffi 

III 
Numerator Coefficients 

Figure 36  Example of an output file generated by the coefficients computation 
modules. 
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The signal processing modules can be executed from a console prompt as in the case of the 
coefficients computation modules. Figure 37 shows an example of how to execute the signal 
processing module for an IIR filter. The first argument of these modules is the file name of 
the input samples. The second argument is the name of the text file which contains the 
coefficients of the implemented filter design. The coefficients file is the output file obtained 
from the coefficients computation modules (i.e."butterout"). The user's guide contains 
information on the format of the input data file. 

Command Prompt 

lici'osoft   Uindows   2006   [Uei-sion   E. CO. 2195] 
X>   Copyright   if;E5-2CGC   Hioi-osi; t V.   C:n i. 

□Mx 

_Sampk 

Coefficients file 

ä 

Figure 37   Command line for executing an IIR signal processing module. 

The output file generated by the signal processing module contains the output of the filter 
used to process the input samples file. One output sample is printed on each line of the file as 
shown in Figure 38. The first column contains the real part of the output and the second 
column contains the imaginary part of the output. In the example shown in Figure 38, the 
values of the imaginary part of the results are zero as a real signal was processed rather than a 
complex signal. 

Si IIRoutput.txt - Notepad 031*1 
File   Edit   Format   r Help 

0.178370 0.000000 
-0.160113 0.000000 
-0.1R4SQ^ o.oftonnf) 
0.053849 0.000000 
0.137787 0.000000 
-0.017965 0.000000        , 
-0.098050 0. 000000 —  J 

0.005989 0.000000 
0.069173 0.000000 
-0.001996 0.000000 
-0.048722 0.000000 
0.000665 

1J 

0.000000 

Real Part 

— Imaginary Part 
Ü 

Figure 38   Example of an output file generated by a signal processing module 
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5     DSP IMPLEMENTATION 

The implementations of the filter modules described in the previous sections have been 
targeted for a general purpose processor. In order to make use of these digital filter modules 
in the ROBR and take advantage of their reconfigurability in "real-time", a DSP 
implementation of the modules is required. For the DSP implementation, a DSP board 
manufactured by Spectrum Signal Processing, Inc., was used. The DAYTONA DSP board is 
a PCI dual processor board and contains two TMS320C6201 fixed point DSP chips. Only 
one processor is used for the filter module implementation. Code development for the DSP 
board is done in the ANSI C programming language. A compiler, code generator, and linker 
are provided with the DSP board. 

Two FIR coefficient computation modules and one FIR signal processing module have been 
adapted for the DAYTONA DSP board. In all three cases, since the original module was 
written in C, only minor changes were required to yield compatibility between the filter 
modules and the DSP architecture. The coefficients computation modules implemented are 
the "Design by Windowing" method and the "Parks-McClellan" method. The FIR signal 
processing module implements the Direct Form structure shown previously in Section 4.1.1. 

The DSP board is hosted in a PC with the WIN NT operating system. The host handles the 
initialization, handshaking and downloading of processor code through the PCI bus. As 
such, the integration of the filter and signal processing modules requires two different files: a 
host program that controls the DSP and provides the user interface, and the DSP file which 
implements the DSP program is responsible for processing the data. 

5.1    Exchanging data between the Daytona and the host station 

The DSP processor has both internal and external memory spaces available including internal 
program and data RAM, external SSRAM, external SDRAM, and dual port RAM. For this 
project, the memory used for the data exchange is the SDRAM of processor 0 on the Daytona 
DSP board [9]. The SDRAM block of the processor goes from address 0x0200000 to address 
0x02FFFFFF. The other memory spaces available on the DSP board are listed in Table 8. 

Description Size Internal or External 
Program RAM 64kB Internal 
SSRAM 16MB External 
I/O, boot 4MB External 
SDRAM 16MB External 
Processor Expansion 
Module (PEM) 

64kB External 

Internal Registers 256kB Internal 

Table 8 Memory configuration of the TMS320C6201 
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5.2   Static and determined length memory allocation 

The static allocation of memory is done on the SDRAM block of the processor. Figure 39 
shows the memory allocation for a typical filter module. Four 32-bit variables are used as 
flags for each module. They are FlagJLeady, FlagData, Flag_Done, and OKMemory. 
The addresses for the memory space are assigned in bytes so that consecutive 32-bit words 
are addressed 4 bytes apart. The use of flags makes the synchronization between the host 
program and the DSP possible. The flag FlagJLeady is set by the DSP to tell the host 
program that the DSP is ready to compute data. The flag FlagData is set by the host to 
signal to the DSP that data is ready to be transferred from the host. The flag Flag_Done is set 
by the DSP to tell the host program that the DSP has finished its computations. The flag 
OKJAemory is used by the DSP to tell the host program that the memory needed for the 
computation has been successfully allocated. As shown in Figure 39 memory has been 
allocated for Numjnput and Num_Coeff which are integer values that are used to store the 
number of coefficients to be computed and the number of input data samples. Arrays are 
allocated at addresses pointed to by Coeff and Data. The array Coeffcontains the coefficients 
computed by the DSP that are transferred back to the host program. The array Data is used to 
hold the input signal samples to be transferred from the host to the DSP. After the DSP has 
performed the signal processing computation, the same area is used to store the computed 
output signal. The host program will then be able to retrieve the output signal from the array 
Data. Figure 40 shows a flow diagram of the handshaking between the host and the DSP. 

»define Flag_Ready (UINT32*)(0x02000004) 
#define Flag_Data (UINT32*)(0x02000008) 
#define Flag_Done (UINT32*)(0x0200000c) 
#define Num_Input (UINT32*)(0x02000010) 
»define Num_Coeff (UINT32*)(0x02000014) 
♦define OK_Memory (UINT32*)(0x02000018) 
»define Coeff (float*)(0x0200001c) 
»define Data (float*)(0x0200090c) 

Figure 39   Static allocation of the variables in the SDRAM memory 
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Host 

I nit flags to 0 

Open and init 
DSP 

No, wait 
No, wait 

Transfer 
input data 

*. SetFlag_Data 

SetFlag_Ready 

DSP 

No, wait 

Figure 40  Flow diagram of the implementation of the filter modules 

5.3   Dynamic memory allocation 

The function call mallocO is a service provided by the run-time support library included in 
the DSP compiler. mallocO extensively used in the reconfigurable modules because the size 
of the arrays needed to store the data from the user is not known in advance. Memory is 
dynamically allocated from a memory space defmed in the "sysmem" memory section of the 
DSP. The sysmem memory section is created and allocated prior to the compilation and the 
linking of the program in the link command file. In Figure 41, a portion of the memory map 
generated by the linker shows that the "sysmem" memory section, which is 0x3000 bytes (or 
12kB) in size, is allocated to begin at address 0x80002018. 
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****************************************************************************** 
TMS320C6x COFF Linker Version 2.00 

****************************************************************************** 

MEMORY CONFIGURATION 

name origin length used   attributes   fill 

IVECS 
I PROG 
SSRAM 
MPRAM 
DL3 
I REG 
SDRAM 
PEM 
IVARS 
I DATA 

00000000 
00000400 
00400000 
01400000 
01600000 
01800000 
02000000 
03000000 
80000000 
800c0000 

000000400 
OOOOOfcOO 
000400000 
000200000 
OOOOcOOOO 
000800000 
001000000 
001000000 
OOOOcOOOO 
000004000 

00000200    RWIX 
00001b80    RWIX 
00000000    RWIX 
00000000    RWIX 
00000000    RWIX 
00000000    RWIX 
00000000    RWIX 
00000000    RWIX 
000050e8    RWIX 
00000000    RWIX 

SECTION ALLOCATION MAP 

output 
section 

.vectors 

page 

0 

origin 

00000000 
00000000 

length 

00000200 
00000200 

attributes/ 
input sections 

isfp6201.o6x (.vectors) 

.text 0 00000400 
00000400 

00001b80 
000009c0 rts6201.1ib : memory.obj (.text) 

.stack 0 80000000 
80000000 

00002000 
00000000 

UNINITIALIZED 
rts6201.1ib : boot.obj (.stack) 

.tables 0 80000000 00000000 UNINITIALIZED 

.data 0 80000000 
80000000 

00000000 • 
00000000 

UNINITIALIZED 
FIRmod.o6x (.data) 

• bss 0 80002000 
80002000 

00000014 
00000008 

UNINITIALIZED 
rts6201.1ib : exit.obj (.bss:c) 

.aysmom 0 80002018 
80002018 

00003000 
00000000 

UNIHZXIALIZZD 
rt»6201.1ib : ■ysaam.dbj (.syamon) 

.cinit 

.const 

0 

0 

80005018 
80005018 

80000000 

00000054 
0000001c 

00000000 
rts6201.1ib : sysmem.obj (.cinit) 

UNINITIALIZED 

GLOBAL SYMBOLS 

Address name address name 

Figure 41   Sysmem memory section allocation in the DSP memory map. 
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5.4 Host program 

The major function of the host program is to control the DSP board and act as the user 
interface to the DSP board. The host program is responsible for reading the design 
specifications of the filter module and passing them to the DSP. The Daytona Windows NT 
Host Application Library (ALIB_HOST) provides several high-level functions that allow the 
user to control the operations of the Daytona from a Windows NT host. 

5.4.1   Host software functions 

The library ALIB_HOST implements several host functions to control the Daytona board. 
The following functions have been used in the filter modules' implementation. 

FT_ControlO : to reset the board 
FT_ErrorMessage() : to catch error message 
FT_GetHandle() : to get handle to Daytona system resources 
FT_Read() : to read from a system resource or host buffer 
FT_SystemClose() : to close the DSP board 
FT_SystemLoad() : to load the DSP code into the system 
FT_SystemOpen() : to open the system 
FT_Write() : to write to the system resources 

5.5 DSP program 

The DSP program contains all the data processing instructions. The algorithm of the original 
modules has not been modified but the variables declared were changed into pointers in most 
cases to be integrated for use on the DSP. 

5.5.1   DSP software functions 

As in the host program, library functions are provided for initialization, interrupts, and DMA 
transfers. In this project, the only library function called in the DSP code is C6x_OpenC6x(). 
This function initializes the C6x processor, sets the wait states for external memory and 
configures the page register. The page register contains the addresses of the memory spaces 
that are available for each processor. The memory spaces are accessed through the PCI bus 
[11]. 
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6   RESULTS AND VERIFICATION 

6.1   Methodology 

The implementation of the filter modules has been verified with the Signal Processing 
toolbox from MATLAB. Table 9 and Table 10 show which corresponding functions from 
MATLAB have been used to verify the coefficients generated by the reconfigurable filter 
modules. 

IIR coefficient computation modu es 
Filter types Reconfigurable Filter 

modules 
Function from MATLAB's 

toolbox signal 
Butterworth butter Butter 
Chebyshev chebl chebyl, cheblap 

Inverse Chebyshev cheb2 cheby2, che2ap 
Elliptical ellip ellip, ellipap 

Bessel bessel - 

Table 9 Corresponding MATLAB functions for the IIR modules verification 

FIR coefficient computation modules 

Design method used and 
Filter types 

Reconfigurable Filter 
modules 

Function from MATLAB's 
toolbox signal 

Frequency sampling freqsampling - 

Windowing hamming firl with hamming window 
Parks-McClellan (optimal 

equiripple filter) remezex Remez 

Gaussian filter gauss - 

Digital Integrator dintegrator - 

Table 10 Corresponding MATLAB functions for the IIR modules verification 

The signal processing modules for the IIR and FIR filters were compared with the 
corresponding filter function from the Signal Processing toolbox. Coefficients generated by 
the coefficient computation modules were provided to the appropriate signal processing 
module to compute the response to an impulse. Subsequently, an FFT is performed using 
MATLAB's FFT function on the output of the signal processing module which gives the 
frequency response. Samples of the impulse function are used as the input to the signal 
processing module. The samples are generated using MATLAB and are composed of 49 
"zeroes" followed by a "one", followed by 49 "zeroes" in floating point representation. 
Figure 42 is a plot of the impulse signal generated with MATLAB. 
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Figure 42   Impulse signal generated with Matlab 

Thus, the verification process was carried out as follows: 

1- Computation of the coefficients with the coefficients computation modules 
2- Computation of the coefficients with MATLAB' s toolbox 
3- Comparison of the coefficients generated by the reconfigurable modules with the 

coefficients generated by MATLAB 
4- Processing of an impulse with the signal processing modules using the coefficients 

computed by the coefficients computation modules 
5- Processing of an impulse with the MATLAB's function using the coefficients 

computed by MATLAB 
6- Performing an FFT on both output generated by the filter modules and by MATLAB 

functions. 
7- Comparison of the frequency response yielded by the filter modules and by 

MATLAB. 

6.2   Results 

6.2.1   IIR filter module verification 

Appendix A shows the plots comparing the frequency response of the Butterworth, 
Chebyshev, inverse Chebyshev, and elliptical filter modules with those generated by 
MATLAB. The frequency response for the bessel filter module is also given. However, there 
is no implementation of a digital bessel filter in MATLAB. In all cases, the responses show 
a steeper rolloff for the higher order filters. Both coefficients computed by the filter modules 
and by MATLAB's functions are identical for filter orders up to 15. In cases of more than 16 
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coefficients, the accuracy of the frequency response yielded by the coefficients starts to 
decrease. This limitation may be caused by the rounding off of floating point number 
variables with the large number of multiplication and addition operations used to compute 
the filter coefficients. 

6.2.2  FIR filter module verification 

For FIR filters, a higher order filter corresponds to a higher number of coefficients. From 
Appendix A, the three FIR filter design methods show that as the number of coefficients 
increases, the transition between the passband and stopband is much steeper, as expected. To 
illustrate this characteristic, an error curve is plotted showing the difference between the 
frequency response of an ideal low-pass filter and the frequency response of the 
reconfigurable filter for each filter design method. An example of an error curve for the 
"Frequency Sampling Design" method with N=10 and N=30 coefficients is shown in Figure 
43. 

1.4- 

1.2- 

1-~ 
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0.6- 

0.4- 

0.2 

Reconfigurable filter 
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Figure 43      Error curve for reconfigurable filter using the "Frequency Sampling 
Design" method, (a) for N=10 coefficients, (b) for N=30 coefficients. 
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The spike in the error curve corresponds to the transition between the passband and stopband. 
It is noted that for N=30, the spike is more compressed along the x-axis than for the N=10 
case, indicating a faster transition between the passband and stopband. 

As with the IIR filter modules, the frequency responses of the reconfigurable FIR filters are 
also presented in Appendix A. The power spectrum for each of these filters is also shown. 
In all cases, the FIR filters are designed to have a normalized cutoff frequency of 0.5. 

The FIR coefficients computation modules that use the "Design by Windowing" method and 
the "Parks-McClellan" method have been verified with MATLAB's respective functions and 
are shown in Appendix A. It is shown that the reconfigurable filter modules yield the same 
general shape of frequency responses as their respective counterpart in MATLAB. The FIR 
coefficients computation modules for the "Frequency Sampling Design" method, the 
Gaussian filter coefficients computation module and the digital integrator have not been 
verified with MATLAB's toolbox because the corresponding functions in MATLAB were 
not available. 

As shown in the error curves, the "Frequency Sampling Design" method yields frequency 
responses for which the transition between passband and stopband becomes steeper as the 
filter order increases. A consequence of the steeper transition is an overshoot of the 
frequency response at the start of the transition which measured approximately 11% of the 
passband magnitude. The attenuation in the stopband is shown to start at -15dB and 
gradually rolls off to approximately -30dB. 

The "Design by Windowing" method yields better frequency responses with less ripple in the 
stopband and in the passband, and smaller overshoot at the transition. Furthermore, the 
results indicated significantly better attenuation in the stopband at around -50dB. However, 
when observing the error curves in Table A10 of Appendix A, a wider spike suggests a more 
gradual transition between the passband and stopband. 

The frequency responses of the "Parks-McClellan" filters exhibited ripples in both the 
passband and stopband as did the "Frequency Sampling Design" method. A difference in the 
amplitude of the frequency responses between the reconfigurable filter module and the 
MATLAB functions can be attributed to different values of the passband and stopband ripple. 
With a greater stopband ripple allowed in the MATLAB case, less attenuation is noted in the 
power spectrum when compared with the reconfigurable filter modules. The error curves for 
the Parks-McClellan method demonstrated transitions between passband and stopband that 
were comparable to the "Frequency Sampling Design" method. While the Parks-McClellan 
method provides flexibility in setting the passband and stopband ripple, it is much more 
computationally intensive. This may have significant implications when choosing a filter 
design method for real-time processing requirements. 

Frequency response and power spectrum curves are also plotted for a Gaussian filter with 
BT=0.2 for N=10,20, and 30 coefficients. As mentioned in Section 4.3.2.2, the "Frequency 
Sampling Design" method was used to implement the reconfigurable Gaussian filter module. 

62 



The results showed that while the main lobe did not change significantly as the number of 
coefficients increased, more attenuation in the stopband was observed as N increased. 

Results for the digital integrator module are also shown in Appendix A. The output curve 
shows the integration of a bipolar input digital bit stream. 
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7   SUMMARY 

This report describes a project to develop reconfigurable IIR and FIR filter modules for use 
in the ROBR project. The theory needed to understand digital signals, LTI systems and filters 
was introduced in Section 2. The concept of IIR and FIR filters was presented in Section 3 
and Section 4. Both the IIR and FIR implementations were represented using the Direct Form 
structure. Equations for the analog frequency response of various types of IIR filters were 
presented. Examples include Butterworth, Chebyshev, and Elliptical filters. 

The design methods used to implement IIR filters produce a discrete filter design from 
analog design prototypes. Two methods have been used to implement IIR filters: the Bilinear 
transformation and the Impulse Invariance method. These two methods perform a 
transformation on an analog design to obtain a discrete design. 

Methods used to produce FIR filters involve sampling, IDFT computation and an 
optimization algorithm. Three design methods have been used to implement FIR filter 
modules: the "Frequency Sampling Design" method, the "Design by Windowing" method 
and the "Parks-McClellan" method. The "Frequency Sampling Design" method involves two 
steps in the computation of the filter coefficients: building an ideal frequency response 
vector, and computing an IDFT. A vector is a discrete sequence of elements. Building the 
vector is equivalent to sampling the ideal frequency response. The "Design by Windowing" 
method involves the same steps as the "Frequency Sampling Design" method except that the 
result of the IDFT performed on the desired frequency response samples are subsequently 
multiplied by a vector containing amplitude samples of a window function. A Hamming 
window has been used for this implementation. The "Parks-McClellan" method is based on 
the Alternation Theorem from optimization theory. The Remez Exchange algorithm is used 
to find the optimal set of extremal frequencies. The goal of the method is to compute the 
coefficients for the best approximation of a desired frequency response. The Remez 
exchange algorithm is a set of conditional statements that, when applied, produce an optimal 
frequency response. The design of a Gaussian filter using the "Frequency Sampling Design" 
method is also presented. 

Reconfigurable filter modules were implemented for five types of IIR filters and four types 
of FIR filters. The implemented types of IIR filters are the Butterworth filter, the Chebyshev 
filter, the Inverse Chebyshev filter, the Elliptical filter and the Bessel filter. Two FIR filter 
modules, based on the "Frequency Sampling Design" method, were implemented called 
freqsampling, and gauss, the latter of which is the Gaussian filter module implementation. 
An FIR filter module was also implemented using the "Design by Windowing" method and 
is called hamming. The "Parks-McClellan" FIR implementation is called remezex. 

Coefficients generated by the reconfigurable filter modules were used to process an input 
impulse function. The resulting frequency response was compared to that generated by 
MATLAB and is presented in Appendix A. The digital reconfigurable IIR filter modules 
were found to yield the same responses as the corresponding functions in MATLAB. The 
FIR digital filter modules also yielded the same frequency responses as MATLAB. The 
Parks-McClellan method provides the flexibility to adjust the passband and stopband ripple 
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while yielding a comparatively steep transition. However, the algorithm is much more 
computationally intensive. A Gaussian filter module and a digital integrator module were 
also successfully implemented. The Gaussian filter and digital integrator modules will 
facilitate the development of a GMSK modulator for the ROBR. 

The "Design by Windowing" and "Parks-McClellan" filter modules were successfully 
adapted for use on a DSP board. As well, a module for processing a signal using the FIR 
filter coefficients generated was implemented on the DSP. The DSP board used was the 
Daytona Dual c62 processor board from Spectrum Signal Processing Inc. Issues related to 
dynamic memory allocation and handshaking between the host and the DSP were discussed. 
Further work is required to completely adapt the filter modules for the ROBR, to assess the 
ability to reconfigure the modules while the ROBR is operating, and to resolve any time 
critical issues for the ROBR where more computationally intensive algorithms are used. 

66 



8     REFERENCES 

[1]      Allan V. Oppenheim and Ronald W. Schäfer, Discrete-Time Signal Processing, Prentice 
Hall Signal, Englewood Cliffs, New Jersey 

[2] Micheal J. Corinthios, Analyse des signaux, Quatrieme edition, Departement de genie 
electrique et de genie informatique, Ecole Polytechnique de Montreal, Janvier 2000. 

[3]       T.W. Parks and C. S. Burrus, Digital Filter Design, John Wiley & Sons, Inc. 

[4] Alexander D. Poularikas, The Handbook of Formulas and Tables for Signal Processing, 
IEEE Press and CRC Press, 1999. 

[5] C. Britton Rorabaugh, Digital Filter Designer's Handbook, Second Edition, McGraw- 
Hill 

[6] A. Antonious, "Accelerated procedure for the design ofequiripple nonrecursive, digital 
filters" IEE Proc, Pt. G, vol. 129, pp. 1-10, Feb 1982 (see IEEE Proc, Pt. G vol. 129, 
p. 107 June 1982 for errata) 

[7] A. Antonious, "New improved method for the design of weighted-Chebyshev, 
nonrecursive, digital filters" IEEE Trans. Circuits Syst., vol. CAS-30, pp. 740-750, Oct. 
1983. 

[8]       Andreas Antonious, Digital Filters: Analysis and Design, McGraw-Hill Book Company 

[9] Daytona Dual 'C6x PCI Board Technical Reference, Document Number 500-00383, 
Revision 2.00, May 1999 

[10] Daytona/Barcelona 'C6x PCI Board Windows NT Programming Guide, Document 
Number 500-00384, Revision 1.10, May 1999 

[11] TMS320C62x/C67x, Programmer's Guide, Literature Number: SPRU198B, Texas 
Instruments, February 1998 

[12] Kazuaki Murota and Kenkichi Hirade, " GMSK Modulation for Digital Mobile Radio 
Telephony", IEEE Transactions on Communications, Vol. COM-29,NO. 7, JULY 1981 

67 



APPENDIX A 



A1. RESULTS 

A1.1. (IR filter modules 

A1.1.1. Butterworth filter 

Reconfigurable filter module 
frequency responses 

Corresponding MATLAB function 
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Table Al Results for the Butterworth filter module 
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A1.1.2. Chebyshev filter 
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Table A2 Results for the Chebyshev filter module 
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A1.1.3. Inverse Chebyshev filter 
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Table A3 Results for the Inverse Chebyshev filter module 
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A1.1.4. Elliptical filter 
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Table A4 Results for the Elliptical filter module 
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A1.1.5. Bessel filter 

Reconfigurable filter module 
Frequency responses 
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Table A5 Results for the Bessel filter module 
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A1.2. FIR filtering modules 

A1.2.1. Frequency sampling design method 

Reconfigurable filter module 
Coefficients 

Error Curve 
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vs. 
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Table A6 Results for the Frequency Sampling Design filter module 
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"Frequency Sampling Design" filter module 
10 coefficients 

Frequency Response 
The maximum value in the 
passband was 1.0946 V/V, 
yielding an overshoot of 9.46%. 
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Table A7 Frequency and power spectrum for N=10 FIR filter using the Frequency 
Sampling Design filter module 
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"Frequency Sampling Design" filter module 
21 coefficients 

Frequency Response 
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Table A8 Frequency and power spectrum for N=21 FIR filter using the Frequency 
Sampling Design filter module 
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•'Frequency Sampling Design" filter module 
30 coefficients 
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Table A9 Frequency and power spectrum for N=30 FIR filter using the Frequency 
Sampling Design filter module 
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A1.2.2. Design by windowing with a Hamming window 

Filtering modules 
coefficients 
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Table A10 Results for the Design by Windowing filter module 
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"Design by Windowing" filter module 
10 coefficients 

Frequency Response 
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Table All Frequency and power spectrum for N=10 FIR filter using the Design by 
Windowing filter module 
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"Design by Windowing" filter module 
21 coefficients 
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Table A12 Frequency and power spectrum for N=21 FIR filter using the Design by 
Windowing filter module 
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'Design by Windowing" filter module 
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Table A13 Frequency and power spectrum for N=30 FIR filter using the Design by 
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A1.2.3. Parks-McClellan method 

Filtering modules 
coefficients 
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Table A14 Results for the Parks-McClellan design filter module 
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Table A15 Frequency and power spectrum for N=10 FIR filter using the Parks-McClellan 
filter module 
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"Parks-McClellan Method" filter module 
21 coefficients 
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Table A16 Frequency and power spectrum for N=21 FIR filter using the Parks-McClellan 
filter module 
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Table A17 Frequency and power spectrum for N=30 FIR filter using the Parks-McClellan 
filter module 

A17 



A1.2.4. Gaussian filter 

Table A18 Frequency and power spectrum results for the Gaussian filter module 
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A1.2.5. Digital Integrator 
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Table A19 Results for the digital integrator filter module 
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Steps to calculate poles and zeros of the elliptic filter 

The Elliptical filter coefficients computation module implements the following steps to 
calculate the poles and zeros of such a filter. Poles and zeros are then used to compute the 
coefficients of the filter [4]. 

(op = passband frequency 

a)s = stopband frequency 
Ap = maximum passband loss (dB) 
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The series in steps 7 and 9 converge rapidly, and three to four terms are sufficient for 
most purposes. Using the quadratic formula, the i* pair of complex pole values can be 
expressed as 
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Header file, "filter.h' 

/it***************************************************************** 

»Purpose:    This library defines the structure, functions and constants to 
* implement complex number manipulation 
* Author: Benoit Gosselin 
* Date: 
* 

♦ifndef FILTER_H 
♦define FILTER_H 

♦include <iostream.h> 
♦include <conio.h> 
♦include <math.h> 
♦include <stdlib.h> 
♦include <stdio.h> 

♦define PI 3.14159265358979 
♦define EPSILON 1.0e-06 

/* This type implements a complex number structure*/ 

struct cnum 
{ 

float Q; 
float I; 

}; 

/it***************************************************************** 

* 
* Purpose: This function computes the real part and the imaginary 
* part of a complex number expressed by r*exp(pi*teta) 
* Author: Benoit Gosselin 
* Date: 
* 

cnum cfun (float c,float r) 

{ 
cnum nb; 
nb.Q = r*cos((float)PI*c); 
nb.I = r*sin((float)PI*c); 
return nb; 

} 

* 

* Purpose: Generalized form for the previous function to allow 
* complex input 
* Author: Benoit Gosselin 
* Date: 
* 

cnum cexp(cnum c) 
{ 

cnum nb; 
nb.Q = exp(c.Q)*cos(c.I); 
nb.I - exp(c.Q)*sin(c.l); 
return nb; 

} 

* 
* Purpose: Output function. This function prints the coefficients 
* computed for an IIR filter in a text file. 
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* Format of the text file: 
* 

* 3.000000 //order of the filter 
* 0.040142 //digital static gain 
* //numerator's coeff //denominator's coeff 
* 0.040142 0.000000 1.000000 0.000000 
* 0.120425 0.000000 -1.057236 0.000000 
* 0.120425 0.000000 1.087358 0.000000 
* 0.040142 0.000000 -0.708990 0.000000 
* 

* the first row is for the real part and the second is for imaginary part 
* 

* Author: Benoit Gosselin 
* Date: 
* parameters: 
* 

* cN : coefficients of the numerator 
* cD : coefficients of the denominator 
* N : number of coefficients at the numerator 
* M : number of coefficients at the denominator 
* order : order of the filter 
* Kd : digital static gain of the filter 
* filename : name of the file where should be print the coefficients 
•••••A************************************************************/ 

void print_coeff(cnum cN[],cnum cD[J,int N,int M,int order,float Kd,char filename!]) 
< 

int i; 
FILE *outputfile,*matoutputfile; 
outputfile - fopen(filename, "w"); 
//print an output file in a different format for Matlab uses 
matoutputfile - fopenCmatcoeffout.txt", "w"); 
fprintf(outputfile,"%f\n",(float)order); 
fprintf(outputfile,"%f\n",Kd); 
cout«endl«"numerator's coefficients"; 

for(  i «= 0;i < N;   i++) 
{ 
cout«endl«cN[i] .Q<<"  + i"«cN[i] .1; 
fprintf(matoutputfile,"%f\n",cN[i].Q); 
fprintf(outputfile, "%f %f %f %f\n",cN[i].Q,cN[i].I,cD[i].Q,cD[i].1); 
} 

for(  i -= 0;i < N;   i++) 
fprintf(matoutputfile,"%f\n",cN[i].1); 

cout«endl«"denominator's coefficients"; 
for(  i - 0;i  < M;   i++) 

{ 
cout«endl«cD[i] .Q«"  + i"«cD[i] .1; 
fprintf(matoutputfile,"%f\n",cD[i].Q); 
} 

for(  i - 0;i < M;   i++) 
fprintf(matoutputfile, "%f\n",cD[i] .1) ; 

fclose(outputfile); 
fclose(matoutputfile); 
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* Purpose: To multiply 2 polynomials together 
* Author:  Benoit Gosselin 
* 

* N and M are the order of polynomials a and b 
* Date: 
* 
* •it***************************************************************/ 

float * polym(float a[],int N,float b[],int M) 

{ 
int i,j; 
int length; 
length = (N + M + 1); 
i«j«0; 

float *poly - (float *)malloc((length) * sizeof(float)); 

for(i=0; i<length;i++) 
poly[i] » 0.0; 

for(i=0;i<N+l;i++) 
{ 
for(j«0;j<M+l;j++) 

poly[length-i-j-l]+«a[i]*b[j]; 
) 

return poly; 
) 

* 
* Purpose: If the real part or the imaginary part of the complex 
* number is too small, set it to 0 
* Author: Benoit Gosselin 
* Date: 
* 

cnum set_to_zero(cnum a) 
< 

if(fabs(a.Q)<EPSIL0N) 
a.Q = 0.0; 

if(fabs(a.I)<EPSILON) 
a.I - 0.0; 

return a; 
) 
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/****************************************************************** 
* 

* Purpose: This function computes the square root of a complex number 
* 

* Author:  Benoit Gosselin 
* Date: 
* 
******************************************************************/ 

cnum sqrtc(cnum a) 
{ 

float r, theta; 

r - sqrt(a.Q*a.Q + a.I*a.I); 

theta - atan(a.I/a.Q); 

theta - theta / 2.0; 

a.Q » sqrt(r)*cos(theta); 
a.I - sqrt(r)*sin(theta); 

return a; 

) 

/****************************************************************** 
* 
* Purpose: This function computes the norm of a complex number 
* Author:  Benoit Gosselin 
* Date: 

******************************************************************/ 

float norm2c (float nbQ,float nbl) 

< 
return (nbQ*nbQ + nbl*nbl); 

) 

/*********************** ******************************************* 

* Purpose: This function implements the 
* multiplication of two complex numbers 
* Author:  Benoit Gosselin 
* Date: 
* 
******************************************************************/ 

cnum multc(float a,float b,float c,float d) 

{ 
cnum temp; 
temp.Q - (a * c) - (b * d); 
temp.I - (a * d) + (b * c); 
return temp; 

) 
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/♦♦•It************************************************************** 
* 
* Purpose: This function implements the square root of a complex number 
* 

* Author: Benoit Gosselin 
* Date: 
* < 
♦a****************************************************************/ 

cnum powc (cnum a,float n) 
< 

float r, theta; 
if(n==0) 

{ 
a.Q - 1; 
a.I -= 0; 
return a; 
} 

r - sqrt(a.Q*a.Q + a.I*a.I); 

theta - atan(a.I/a.Q); 

theta - theta * n; 

a.Q » pow(r,n)*cos(theta); 
a.I - pow(r,n)*sin(theta); 

a»set_to_zero(a); 
return a; 

* 

* Purpose: This function implements the division of two complex numbers 
* Author: Benoit Gosselin 
* Date: 
* 

cnum dive(float NQ,float NI,float DQ,float DI) 

{ 
cnum temp - multc(NQ,NI,DQ,-1.0*DI);     //multiplying by the conjugate 
float norm « norm2c(DQ,DI) ; 
if(norm -= 0) 

{ 
cout«endl«"divide by 0 in dive  (norm - 0)"; 
temp.0=0; 
temp.1=0; 
return temp; 
} 

else 
{ 
temp.Q - temp.Q /   ( norm); 
temp.I = temp.I  /   (  norm); 
return temp; 
) 
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/•a**************************************************************** 

* 
* Purpose: This function implements an Expansion recursion formula to 
* obtain the coefficients of a polynomial from its roots 
* Author: Benoit Gosselin 
* Date: 
* Prameters: 
* c : to store the coefficients of the polynomial 
* e : roots of the polynomial 
* m : order of the polynomial 
* n : This indice decrease at each recursion loop from n-m 
* 

int coeff (struct cnum *c,struct cnum e[],int n,int m) 

{ 
cnum num; 
num - multc(c[n].Q,c[n].I,e[m].Q,e[m].1); 

c[n+l].Q » c[n+l].Q - num.Q; 

c[n+l].I - c[n+l].I - num.1; 

if(n > 0) 
return coeff(&c[0] ,e,n-l,m) ; 

else 
return 0; 

} 

»endif 
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